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Abstract 
In this paper, the finite difference method is employed to discretize the partial differential 
equation (PDE) through replacement of the PDE by a difference equation to be satisfied by 
the values of the vector of unknowns ݔ at a finite set of points in the domain of the 
independent variable. This discretisation ultimately results in an associated linear system of 
equations ݔܣ = ܾ, where ܣ is an ݊ − ݊ matrix, ܾ is an ݁ݎܽݑݍݏ × 1 column vector and ݔ is the 
vector of unknowns. A large body of iterative methods for solving such linear systems 
abound, and several of them have been studied in order to improve on their robustness, 
convergence and suitability for specialized systems. One of such methods is the Accelerated 
Overrelaxation (AOR). The AOR is a two-parameter generalization of the classical Jacobi, 
Gauss-Seidel and Successive Overrelaxation (SOR) methods for the iterative solution of the 
linear system ݔܣ = ܾ. Here, the basics of the AOR method is established, suitable values are 
assigned to the parameters involved, and the method is applied to solve some partial 
differential equations of elliptic type. Results of numerical experiments proved the 
effectiveness of the method. 
 

Keywords: Accelerated Overrelaxation Method, Iterative Method, Elliptic Partial Differential 
Equation, ܮ  Spectral Radius ,ݔ݅ݎݐܽ݉−

Introduction 
The numerical solution of partial differential equations (PDEs) more often than not involves 
discretization; this entails the approximation of the PDEs by equations that involve a finite 
number of unknowns. The finite difference method (FDM) is one simple method of 
discretizing a PDE; it involves replacement of the PDE by a difference equation which must be 
satisfied by the values of the unknown function ݔ at a finite set of points in the domain 
Ω(Saad, 2000).Using this method, the domain is divided into a finite number of nodes or 
meshpoints, where each node is assigned a unique identifier based on its position in the 
mesh. The approximation of partial derivatives by finite differences more often than not leads 
to an associated linear system of equations 

ݔܣ = ܾ                                                                                    (1) 

where ܣ = ൫ܽ௜௝൯ ∈ ℝ௡×௡ is a nonsingular matrix with nonvanishing diagonal elements, and 
where ݔ ∈ ℝ௡ and ܾ ∈ ℝ௡ are respectively vectors of unknown and preassigned variables. We 
also consider the usual splitting of ܣ = ܦ − ஺ܮ − ஺ܷ such that  

 

௜௝ܦ = ൜ܣ௜௝if ݅ = ݆,         
0   otherwise, ஺೔ೕܮ− = ൜ܣ௜௝if ݆ < ݅,          

0   otherwise, − ஺ܷ೔ೕ = ൜ܣ௜௝if ݆ > ݅,         
0   otherwise.

 

 

For simplicity, we impose the normalization ିܦଵݔܣ = ܣ ଵܾ on (1) such thatିܦ = ܫ − ܮ −ܷ, 
where ܫ is the identity matrix, and −ܮ and −ܷ are respectively the strictly lower and strictly 
upper triangular matrices. 
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To approximate the solution of the linear system (1) we can use the Accelerated 
Overrelaxation (AOR) iterative method introduced by Hadjidimos (1978). The iteration matrix 
of the AOR method, denoted by ܮ௥,ఠ , is defined by  

௥,ఠܮ = ܫ) − ܫଵ[(1−߱)ି(ܮݎ + (߱− ܮ(ݎ +ܷ߱]                       (2) 

where ݎ and ߱(≠ 0) are scalars called acceleration and overrelaxation parameters 
respectively. It is well-known that for specific values of the parameters ݎ and ߱, the following 
standard methods can be obtained as special cases of the AOR: Jacobi (ܮ଴,ଵ), Gauss-Seidel 
 .(ఠ,ఠܮ) and successive overrelaxation (SOR) (଴,ఠܮ) Jacobi overrelaxation (JOR) ,(ଵ,ଵܮ)
Therefore, the AOR method is a two-parameter generalization of the most popular basic 
iterative methods. A basic iterative method is a one-step method of the form ݔ(௡) = (௡ିଵ)ݔܩ +
݇ where for some nonsingular matrix ܳ we have ܩ = ܫ − ܳିଵܣ and ݇ = ܳିଵܾ. But the AOR 
method, except for the case ݎ = 0, is essentially a one-parameter extrapolation of the SOR 
(ESOR) method with overrelaxation ݎ and extrapolation ߱(Hadjidimos, 1978). 

௥,ఠܮ = ௥,௥ܮݏ + (1−  (3)                                                          ܫ(ݏ

With specific conditions imposed on the coefficient matrix ܣ, and some restrictions on the 
parameters ݎ and ߱, Hadjidimos (1978) established convergence of AOR for three cases: 
irreducible matrices with weak diagonal dominance, ܮ −matrices and consistently ordered 
matrices.In Hallett (1986)convergence of AOR was extended to cover any real-valued 
equation system. It is known that the AOR is a fast converging method in relation to SOR; 
however, its convergence rate can be improved so as to appeal to its applicability in industry. 
In this light, several researchers, Evans et al. (2001), Li et al. (2007), Nasabzadeh and 
Toutounian (2013), Renet al. (2016),Salkuyeh and Abdolalizadeh (2011), Wu and Liu (2014), 
Wu et al. (2007) and Youssef and Farid(2015)have made significant contributions. 

This present work is an attempt to employ the AOR iterative method to approximate the 
solution of sparse linear systems arising from the discretisation of self-adjoint partial 
differential equations of elliptic type. 

Materials And Methods 

Let us consider the linear self-adjoint elliptic partial differential equation 

∇ଶݑ = −1                                                                              (4) 

ݑ = 0, |ݔ| = 1, |ݕ| = 1                                                    (5) 

defined in the unit square, |ݔ| ≤ 1, |ݕ| ≤ 1. 

To solve (4), a square mesh of vertical and horizontal lines with mesh spacing ℎ = 1 4⁄  in 
both the vertical and horizontal directions is super imposed over the square region 0 ≤ ݔ ≤ 1,
0 ≤ ݕ ≤ 1. This results in 9internal pointsand 16 boundary points as shown in Figure 1. 
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Figure 1 Discretisation of square region |ݔ| ≤ 1, |ݕ| ≤ 1with 4 × 4density 

At each interior point of the region, the partial derivatives߲ଶݑ ⁄ଶݔ߲  and ߲ଶݑ ⁄ଶݕ߲  appearing in 
equation (4) are replaced by the standard second order three-point central difference 
quotients(ݑ௜ାଵ,௝ − ௜,௝ݑ2 + (௜ିଵ,௝ݑ ℎଶ⁄  and (ݑ௜,௝ାଵ − ௜,௝ݑ2 + ௜ݑ ,௝ିଵ) ℎଶ⁄  respectively. Thus the finite 
difference approximation to equation (4) at each interior grid point is given by  

ݔ) + 1)[൫ݑ௜ାଵ,௝ − ௜,௝ݑ2 + ௜ିଵ,௝൯ݑ ℎଶ⁄ ] + ଶݕ) + ௜ݑ)](1 ,௝ାଵ − ௜ݑ2 ,௝ + (௜,௝ିଵݑ ℎଶ⁄ ] + ௜ݑ ,௝ = −1   (6) 

i.e., 

ݔ)2] + ଶݕ + 2)− ℎଶ]ݑ௜,௝ − ݔ) + ௜ାଵ,௝ݑ(1 − ݔ) + ௜ିଵ,௝ݑ(1 − ଶݕ) + ௜ݑ(1 ,௝ାଵ − ଶݕ) + ௜,௝ିଵݑ(1 = ℎଶ(7) 

At the interior points, ݑଵଵ ଶଵݑ, ଷଵݑ, ଵଶݑ, ଶଶݑ, ,ݔ) ଷଷ, the values ofݑ ଶଷ andݑ ,ଵଷݑ ,ଷଶݑ,  ,are (ݕ
respectively,(−1 2⁄ ,−1 2⁄ ), (0,−1 2⁄ ), (1 2⁄ ,−1 2⁄ ),(−1 2⁄ , 0), (0,0), (1 2⁄ , 0), (−1 2⁄ , 1 2⁄ ), 
(0, 1 2⁄ ) and (1 2⁄ , 1 2⁄ ). 

The known boundary values are ݑ଴ଵ = ଴ଵݑ,0 = ଶ଴ݑ,0 = 0, ସଵݑ = 0, ଷ଴ݑ = ଴ଶݑ,0 = ସଶݑ,0 = 0, 
଴ଷݑ = ଵସݑ ,0 = ଶସݑ ,0 = ସଷݑ ,0 = ଷସݑ,0 = 0. 

Equation (7) is applied at each interior point to obtain the following linear system 
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ଵଵݑ4 − ଶଵݑ − ଴ଵݑ − ଵଶݑ − ଵ଴ݑ =
1

16

ଶଵݑ4 − ଷଵݑ − ଵଵݑ − ଶଶݑ − ଶ଴ݑ =
1

16

ଷଵݑ4 − ସଵݑ − ଶଵݑ − ଷଶݑ − ଷ଴ݑ =
1

16

ଵଶݑ4 − ଶଶݑ − ଴ଶݑ − ଵଷݑ − ଵଵݑ =
1

16

ଶଶݑ4 − ଷଶݑ − ଵଶݑ − ଶଷݑ − ଶଵݑ =
1

16

ଷଶݑ4 − ସଶݑ − ଶଶݑ − ଷଷݑ − ଷଵݑ =
1

16

ଵଷݑ4 − ଶଷݑ − ଴ଷݑ − ଵସݑ − ଵଶݑ =
1

16

ଶଷݑ4 − ଷଷݑ − ଵଷݑ − ଶସݑ − ଶଶݑ =
1

16

ଷଷݑ4 − ସଷݑ − ଶଷݑ − ଷସݑ − ଷଶݑ =
1

16⎭
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                                       (8) 

The known boundary values are further substituted into (8) to obtain the matrix vector 
notation ݔܣ = ܾ 
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⎞

            (9) 

Then the linear system (9) is expressed in matrix vector notation ିܦଵݔܣ =  ଵܾ, for the AORିܦ
method (2) to be  applied. The spectral radius of the AOR method is computed for various 
values of acceleration and overrelaxation parameters ݎ and ߱ and the results are compared 
with those of the SOR method. 
Results and Discussion of Findings 

Table 1     Spectral radii of iteration matrices for various values of ࢘ and ࣓. 

 (࢘࢕࢙ࡸ)࣋ (࣓,࢘ࡸ)࣋ ࢘ ࣓
0.1 0.2 0.9684428864 0.9696286079 
0.2 0.3 0.9342686035 0.9368857754 
0.3 0.4 0.8970329252 0.9014029066 
0.4 0.5 0.8561552823 0.8627105745 
0.5 0.6 0.8108495299 0.8201941016 
0.6 0.7 0.7600000002 0.7730194340 
0.7 0.8 0.7019160160 0.7200000000 
0.8 0.9 0.6337715516 0.6593325909 
0.9 0.95 0.5705360266 0.5879929947 
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In Table 1, we denote ܮ௥,ఠ and ܮ௦௢௥ as iteration matrices of AOR and SOR methods 
respectively; the parameters ݎand ߱ are respectively the acceleration and overrelaxation 
parameters. Table 1 illustrates that convergence of the AOR iterative method is faster than 
that of the SOR iterative method. 
Conclusion 
In this paper we have demonstrated the importance of the AOR (SOR) method as a very 
simple and powerful technique for solving linear systems arising from finite difference 
discretisation of elliptic partial differential equations. It should come as a no surprise that the 
AOR method exhibits faster convergence than the SOR; this is due to the presence of two 
parameters as opposed to the one parameter of SOR. Further research effort could be 
devoted to finding the optimum combination of the two parameters, for faster convergence. 
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