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Abstract 
A sum total of sixty-four (64) Schlumberger Vertical Electrical Sounding (VES) points have been 
occupied using ABEM Terrameter SAS 300 unit with maximum electrode spacing of 100m in 
Maro earth dam site, Kachia Local Government Area (LGA) of Kaduna State. The aim is to 
demonstrate the capability of pseudosection in reducing common ambiguities such as 
suppression, equivalence and k-type equivalence arising from interpretation of electrical 
resistivity data that can obscure subsurface geology. The data were analysed and interpreted 
using the curve matching technique and the Resist software respectively. An isopach map was 
prepared by posting and contouring the depth to bedrock beneath each VES to show the 
subsurface bedrock topography and structural disposition. The resistivity data were prepared into 
pseudosections by plotting the electrode spread, AB/2 (m), against the corresponding resistivity 
values beneath each VES data point. The resistivity data spread were then contoured to show 
the subsurface resistivity pattern along two chosen traverses suspected to have been fractured 
from the isopach map. The results show that pseudo-section is a better representation of the 
subsurface geology than geoelectric section due to the former ability to give precise and clear 
pictures of the subsurface geology than the latter. In addition, Pseudosection can delineate 
linear structural features undetected by the geoelectric section as shown in the case studies 
where one of the recommended traverses based on the geoelectric section have been confirmed 
fractured from the pseudosection and hence unsuitable for the dam site location.  
 
Keywords: Pseudosection, Geoelectric Ambiguities, Geoelectric Parameters, Accuracy, 

Geoelectric Section and Earth Dam 
 
Introduction 
The problem of ambiguities of geoelectric parameters have long standing recognition as the sole 
factor responsible for non-uniqueness of electrical resistivity data interpretation (Zohdy, 1980 
and; Abdullaev and Dzhafarov, 1964). Geoelectric section is a one dimensional tool routinely 
used in constructing the subsurface geoelectrical configurations (Momoh, 2010., Momoh and 
Olasehinde, 2010) but handicapped in the essential task of detailing structural analysis due to 
data ambiguities arising from curve matching. Electrical resistivity surveys are carried out for 
direct and indirect mineral exploration, lithological mapping, engineering site investigation, 
hydrogeophysical and geological surveys, salt/fresh water interface delineation among others 
(Momoh et al, 2008; Flathe, 1967; Banwell and MacDonald, 1965 and Hansen, 1966). The 
relatively cheap cost of and/or recent advancement in automation of data acquisition has further 
widened the scope of electrical resistivity method. There is therefore a practical need to device a 
simplified and accurate method for geoelectric/geologic subsurface presentation. 
 
For any aim of electrical resistivity survey to be achieved, the boundaries between the geologic 
layers are expected to coincide with geoelectric layers (layer resistivities and depths). It is a 
common knowledge that the interpretation of a multilayer sounding curve is generally never 
unique. This means that a given electrical sounding curve can correspond to varieties of 
subsurface distribution of layer thicknesses (hi) and resistivities (ρi) through curve matching. 
Hence both the resistivities and thicknesses of earth layers can be altered and yet the 
conductance (hi/ρi) remain the same giving the interpretation problem commonly referred to as 
equivalence (Fig. 1) or hiρi can be evaluated in multi forms by varying the same data set for 
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constant geologic model defining another limitation of electrical method termed the k-type 
equivalence (Fig. 2). Similarly, an intermediate layer thickness can be totally suppressed to give 
room for thickness increase in another layer. Case histories of the above mentioned problems 
abound in literature (Maillet, 1947; Flathe, 1955 and 1963; Bhattacharya and Patra, 1968.). 
These indeed constitute huge limitations to interpretation of electrical resistivity data that require 
serious attention. 
 
                         1000 Ωm                        1000 Ωm                              1000 Ωm      
 h= 10.0 m         100 Ωm           h= 10.0 m     50 Ωm            h= 10.0 m       10 Ωm 
                         5000 Ωm                           5000 Ωm                              5000 Ωm 
                         S=10/100=0.1                    S=5/50=0.1                       S=1/10=0.1        
 
Conductance (s) = hi/ρi where h is the thickness of a geoelectric layer and ρ is the corresponding  
resistivity values  
 
Fig.1: Typical Geoelectric Sequence of Equivalence 
The present work attempt to presents pseudo-section as an alternative form of presenting 
geoelectric data since the direct data used in the construction of pseudo-section give accurate 
and clear pictures of the subsurface geology in a simplified form. This is based on the premise 
that an acquired field data with a minimal noise level represent a true model of the subsurface  
 
Transverse Resistance, T = Resisitivity x thickness = hixρi                                                                                                                             
                          50 Ωm                                   50 Ωm                  50 Ωm 
 h= 1.0 m          100 Ωm                 h= 1.0 m   100 Ωm      h= 1.0 m      100 Ωm                      
                           20 Ωm                                  20 Ωm                           20 Ωm                                                     
                   T=10X100=1000  T=2X5000=1000  T=1X1000=1000 
 
Fig. 2: Typical Geoelectric Sequence of K-Type Equivalence geology that can be automated as 
pseudosection compared to processed curve matched method that is normally accompanied with 
the above inherent limitations (Nwankwo et al, 2004).              
 
Methodology 
A case history of Maro Earth Dam involving sixty-four (64) Schlumberger Vertical Electrical 
Sounding (VES) carried out to investigate possible axis of a dam site location in Maro village, 
Kachia Local Government Area (LGA) of Kaduna State was adopted in this work (Momoh and 
Olasehinde, 2010) as shown in Figure 3 and Figure 4. The dam is to enhance water supply for 
Maro populace and irrigation. The site geology consists of rocks of Precambrian Basement 
Complex of Nigeria that are Pan-African in ages and classified as undifferentiated by Dan Hassan 
and Olorunfemi, 1999 (Fig.5).  
 
Although, the VES data were acquired along eight geophysical traverses as shown in Figure 3 
and used in the previous work (Momoh and Olasehinde, 2010), traverses G-L, I-J, K-L and M-N 
with approximate perpendicular trend to the river channel were selected and adopted for the 
present work to detail the suspected structural features. Profile length of 800m were adopted for 
traverses G-L and K-L while traverses I-J and M-N were 1km and 900m long respectively. Inter-
traverse and station interval of 100 m was adopted for the VES. The data were analysed and 
interpreted in the aforementioned publication above using the curve matching technique and the 
Resist software respectively.  
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Fig. 3: The location map of the case study area 
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Fig. 4: The geophysical data acquisition map  
 
An isopach map was prepared by posting and contouring the depth to bedrock beneath each 
VES to show the subsurface bedrock topography and structural disposition. The resistivity data 
were prepared into pseudosections by plotting the electrode spread, AB/2 (m), against the 
corresponding resistivity values beneath each VES data point. The resistivity data spread were 
then contoured to show the subsurface resistivity pattern along two chosen traverses suspected 
to have been fractured from the isopach map. Comparisons of the obtained pseudosections with 
the geoelectric sections for characteristic similarity/difference pattern determination were done 
for interpretation of the subsurface geological sequences.  



Journal of Science, Technology, Mathematics and Education (JOSTMED) Volume 8(1), December, 2011 

 

27 
 

Zaira

Kaduna 

0 20 40 60 80Km

STUDY AREA 

9o N

10o N

11o N

12o N11o N

13o N

7o E 8o E 9o E 9o E

State Boundary 

Undifferentiated  
Basement complex
Mainly gneiss

Metasediments
(phyllite, schist, etc)

Quartzite 

Older Granite 

Younger  Granite 

Newer Basalt 

LEGEND

JURASSIC
 

PRE 
–CAM

BRIAN 

N

 
Fig. 5: The geological map of the area (After Dan-Hassan and Olorunfemi, 1999) 
 
Results and Discussion 
Fig. 6 is an isopach contoured map of the case study area showing the subsurface relative 
thickness of the geoelectric sequences and the associated structural dispositions. Aside pockets 
of relatively thick overburden in the southern end of the study area, two major basement 
depressions; D1—D1 and D2—D2 characterised by thick overburden were delineated within the 
eastern to southeastern part of surveyed area. The distortion of contour lines shows that the 
basement depressions have been affected by tectonism and hence the displacements of their 
once continuous axis giving rise to the inferred fault, F---F. Relatively thinner overburden 
characterised the other parts of the investigated area. The basement depressions observed from 
isopach map falls within traverses G-H, I-J, K-L and M-N corresponding to zones of ancient river 
channels shown by the geoelectric sections (Fig. 7).   
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Fig. 6: Isopach contoured map showing the subsurface structural features of the study area
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From the pattern of the contour lines in Figures 7 and 8, four different geoelectric layers which 
include the top soil, the lateritic layer, the weathered layer and the resistive bed rock can be 
differentiated. The four layers were equally delineated by the geoelectric sections (Fig. 9). The 
top soils characterised by depth range of generally <1.0 m from Figures 7 and 8 are lateritic with 
pockets of sands in places with resistivity values ranging between 1154 and 2068 Ωm, 337 and 
2550 Ωm respectively. 
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Fig.9: Geoelectric section for traverses G-H, I-J, K-L and M-N in the surveyed area 
 
The representative contour lines defined a relatively straight to curved course across the two 
traverses. The second lateritic layer to a depth of 10.0 m beneath Fig. 7 and 8 respectively are 
characterised by curved to hemispherical contour with resistivity values varying from 500 to 
above 1600 Ωm and 1050 to 2446 Ωm while the weathered layer represented by near to 
complete contour closures has corresponding resistivities values of between 50 and 400 Ωm, and 
100 and 300 Ωm. This shows that the weathered layer is composed of clay/sandy clay/clayey 
sand materials. Their equivalent depth ranges are from 10-40 m and 15-65 m accordingly. The 
highly resistive bed rock exhibit characteristic contour arch up to an infinite depth with values of 
resistivities varying from 350 to 1250 Ωm and 350 to 1000 Ωm beneath Fig. 7 and 8 respectively.  
Contour divergence and distortion is observed beneath VES 06 and 08, and VES 07 and 10 along 
traverses G-H and I-J respectively. These zones are characteristically defined by contour 
discontinuity and fall within the basement depressions along traverses G-H and I-J respectively. 
The isopach map inferred a fault within these regions. The observed contour discontinuity along 
traverse G-H probably indicates the influence of the same inferred fault along the traverse.  
 
The circular contour typify by contour kink and divergence observed beneath VES 07 and 10, 
along traverse I-J is characterised by a central contour closure of values ranging from 800 to 
over 4000 Ωm, showing an existence of confined fracture at depth greater than 30.0 m. These 
features are conspicuously missing in the corresponding geoelectric section (Traverse I-J in 
Figure 9).  
 
Conclusion  
Pseudosection has been shown in this work to have the capability of reducing inherent problems 
of ambiguities in electrical resistivity data such as suppression, k-type equivalence and 
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equivalence. A case study involving the use of Schlumberger VES for a dam site location in Maro 
village of Kachia LGA in Kaduna State have been presented and the work shows that 
pseudosection give clearer and more accurate picture of the subsurface geology than geoelectric 
section and the former can as well delineate linear features undetected by the latter. 
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