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Abstract 
Response surface methodology is a collection of Statistical and Mathematical techniques useful for 
developing, improving, and optimizing processes. In this paper, the central composite design (CCD) 
method for fitting a second – order response surface model was used with the data extracted from 
Ipadeola (1990) as found in Illimiese (2008), to optimize the process variables (extraction time (t), 
solvent volume (v), ethanol concentration (c), and temperature (T)) and examine their effects on 
the yield and phosphatidylcholine enrichment (PCE) of deoiled rapeseed lecithin when fractionated 
with ethanol. The significance of the linear, quadratic and interaction terms were first examined and 
it was discovered that each of them significantly contributes to the response model at α = 0.05 
level, which implies that the fitted second-order model significantly explains the response surface. 
Then the analysis proceeds to locate the set of the levels of the factors (the stationary point) that 
yield optimum value of the response variable. The canonical analysis was carried out and it was 
detected that the stationary point is a saddlepoint. 
 
Keywords:  Response surface, second-order models, central composite design, yield, stationary 

point 
 
Introduction 
The statistical design of experiments approach to process development offers several key 
advantages over the traditional one-variable-at-a-time approach. Box et al., (2005) reported that 
“the practice of a single factor optimization by maintaining other factors involved at an unspecified 
constant level do not portray the combined effect of interactions of factors involved. The method is 
tedious, time consuming and expensive, especially for a large number of variables. Moreover it does 
not guarantee the determination of optimum conditions among the variables”. 
 
Response surface methodology (RSM) is a powerful mathematical model with a collection of 
statistical techniques where in, interactions between multiple process variables can be identified with 
fewer experimental trials (Myers et al, 2009). It is widely used to examine and optimize the 
operational variables for experiment designing, model developing and factors and conditions 
optimization. There are various advantages in using statistical methodologies in terms of rapid and 
reliable short listing of process conditions, understanding interactions among them and tremendous 
reduction in total number of experiments. The classical method of studying one variable at a time 
can be effective in some cases but it is useful to consider the combined effects of all the factors 
involved (Box, 1952, Box and Hunter, 1957). The Response Surface Methodology (RSM), based on 
statistical principles, can be employed as an interesting strategy to implement process conditions 
that drive to optimal yield of deoiled rapeseed by performing a minimum number of experiments.  

 
Response Surface Methodology (RSM) is a set of techniques that includes setting up a series of 
experiments that will yield adequate and reliable measurements of the response of interest, 
determine a model that best fits the data collected from the design chosen and determine the 
optimal settings of the experimental factors that produce the maximum (or minimum) value of the 
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response (Montgomery, 2001).These designs provide information on direct effects, pair wise 
interaction effects and curvilinear variable effects. 
Response Surface Design allows for evaluation of statistical significance of fitted mathematical 
models, the contribution of individual process parameters, as well as that of the interaction between 
factors, which is not possible using the one-variable-at-a-time approach. The mathematical models 
can then be utilized to find the predicted optimum system response within the experimental region 
of the study. The optimized set of conditions can then be verified experimentally to validate the 
model prediction. 
 
In practice, the form of the relationship is unknown but can be approximated, within the 
experimental region, by a low degree polynomial model of the form ¢ = 	ê +  (.)																																																											ࢋ
y is an (n X 1) vector of observations, X is an (n X k) matrix of levels of independent 
variables, ß is a (k X 1) vector of regression coefficients, and e is an (n X 1) vector ofrandom errors 
(Montgomery 2001). 
 
If X is a (k X k) matrix, then the linear system y = Xß + e has a unique least 
squares solution given by ê= (	ᇱ	) ି	ᇱ¢																																					(.) 
 
The estimated regression equation is¢ෝ= 	êLack-of-fit techniques are then applied in order to 
check whether the model is appropriate. 
In this work, optimization of process conditions (extraction time, solvent volume, ethanol 
concentration, and temperature) using RSM for the yield and phosphatidylcholine enrichment (PCE) 
of deoiled rapeseed lecithin when fractionated with ethanol have been carried out and the influence 
of these variables was well studied using CCD experiments. 
 
Materials and Methods 
In this paper, the central composite design (CCD) method for fitting a second –order model was 
used and illustrated with the data extracted from Ipadeola (1990) as found in Illimiese (2008), to 
examine the effects of extraction time (t), solvent volume (V), ethanol concentration (C), and 
temperature (T) on the yield and phosphatidylcholine enrichment (PCE) of deoiled rapeseed lecithin 
when fractionated with ethanol. First –order model have earlier been illustrated on the data (Audu et 
al., 2009). 
 
Central composite design (CCD) as the most popular methodfor fitting a second–order model was 
introduced by Box and Wilson (1951). It consists of factorial points (from a k2 factorial design or a 

pk-2 fractional factorial design), central points, and axial points. 
 
A uniform-precision 2(k = 4) factorial central composite experimental design with eight star points, 
one center point, resulting in a total of 25 experimental runs was used to optimize the chosen key 
variable yield of deoiled rapeseed lecithin. 
 
Table 2.1 shows the four independent variables (extraction time, solvent volume, ethanol 
concentration, and temperature) and their concentrations at different coded and actual levels of the 
variables employed in the design matrix. The natural variables ( ix ) were transformed to coded 

variables ( ix ) using the relation 
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Table 2.1:  Codes and actual levels of the independent variables 
Independent variable Coded levels 
 -1.414 -1 0 1 1.414 
Extraction time (t) 2.93 5 10 15 17.07 
Solvent volume (v) 3.965 5 7.5 10 11.035 
Ethanol concentration (c) 90.758 92 95 98 99.242 
Temperature (T) 12.93 15 20 25 27.07 
 
Using these coded values for the natural variables, the proposed second –order model is of the 
form: 
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Where uy (u = 1, 2, …,N) represents the uth response value (yieldof deoiled rapeseed lecithin) 
obtained as a result of applying the uth design setting (or uth treatment combination), iux is the 

level of the ith factor in the uth treatment combination, (i = 1, 2, …, t), ib  is the ith factor 

coefficient, ue  is the random error associated with the uth observation that is independently and 

normally distributed with mean zero and common variance 
2s . 

 
Analysis of the second-order model 
The second-order model is flexible, because it can take a variety of functional forms and 
approximates the response surface locally. Therefore, this model is usually a good estimation of the 
true response surface. Besides, the method of least squares can be applied to estimate the 
coefficients jb in the model.TheANOVA and regression analysis for the response variable Yield, as 

generated by the Minitab14 software, are shown in Tables 3.1and 3.2below. 
 
The estimated regression equation is 

CDBDBCADACAB

DCBADCBAyield

100.0500.0625.0150.0275.0775.0

94.054.159.141.028.113.267.234.146.21 2222

-+++++
---+++++=

(3.1) 

 
Response Surface Regression: yield versus A, B, C, D  
 
Table 3.1:  Estimated Regression Coefficients for Yield 
Model Term Regression 

Coefficient 
Standard 
Error(Coef.) 

t-statistics P-value 

Constant 21.4632 0.4338 49.480 0.000 
A 1.3380 0.1617 8.275 0.000 
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B 2.6706 0.1617 16.516 0.000 
C 2.1336 0.1617 13.195 0.000 
D 1.2805 0.1617 7.919 0.000 
A*A 0.4106 0.2557 1.606 0.139 
B*B -1.5900 0.2557 -6.218 0.000 
C*C -1.5400 0.2557 -6.022 0.000 
D*D -0.9398 0.2557 -3.675 0.004 
A*B 0.7750 0.1808 4.287 0.002 
A*C 0.2750 0.1808 1.521 0.159 
A*D 0.1500 0.1808 0.830 0.426 
B*C 0.6250 0.1808 3.457 0.006 
B*D 0.5000 0.1808 2.766 0.020 
C*D -0.1000 0.1808 -0.553 0.592 
S  0.7231       
R-Sq 98.6%    
R-Sq(adj)  96.7%    
 
Table 3.2:  ANOVA Table 
Source DF SS MS F P 
Regression 14 371.469 26.5335 50.74 0.000 
  Linear 4 302.270 75.5675 144.52 0.000 
  Square 4 47.609    11.9022   22.76 0.000 
  Interaction 6 21.590    3.5983 6.88  0.004 
Residual Error 10 5.229     0.5229   
Total 24 376.698    
 
As can be observed from table3.1,the regression coefficients of the linear terms A, B, C, and D are 
significant at both 0.01 and 0.05 levels. The quadratic terms, ,, 22 CB 2D and interaction terms 
AB,BC and BD significantly contribute to the response model at α = 0.05.This table also shows a 
high value (98.6%) of R2 (coefficient of determination), which indicates that the yield and 
phosphatidylcholine enrichment (PCE) of deoiled rapeseed lecithin fitted the second- order 
polynomial equation well. 
 
The Analysis of Variance table (Table 3.2) summarizes the linear terms, the squared terms, and the 
interactions.This table demonstrated that the model is significant due to the small p-value. The 
linear, square and interaction effects in the model are all significant due to the exhibited small p-
values. This indicate that the contributions of these effects to the model are significant. Since there 
are no replicated center points, thesoftware cannot obtain a lack-of- fit. But, small p-values for the 
interactions and thesquared terms suggest there is curvature in the response surface. 
 
In addition, the package draws four residual plots (Figure 3.1) - Histogram of residuals, which is an 
exploratory tool to show general characteristics of the data, Normal plot of residuals, to show if the 
data obey the normality assumption, Residuals versus fits, which shows a random pattern of 
residuals on both sides of 0, and Residuals versus order, which is a plot of all residuals in the order 
that the data were collected.  
 
We can see that the residual plots do not indicate any problems with the model. 
As a result, the final model for the response variable Yield, based on these significant terms, is given 
as: 
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Yield = 21.5 + 1.34A + 2.67B + 2.13C + 1.28 D - 1.59 2B  
- 1.54 2C – 0.94 2D  + 0.77AB + 0.62BC+0.50 BD   (3.2) 
        
Locating the Stationary Point 
The second-order models illustrate quadratic surfaces such as minimum, maximum, ridge, and 
saddle. If there exits an optimum then this point is a stationary point. The stationary point is the 
combination of design variables where the surface is at either a maximum or a minimum in all 
directions. If the stationary point is a maximum in some direction and minimum in another direction, 
then the stationary point is a saddlepoint. When the surface is curved in one direction but is fairly 
constant in another direction, then this type of surface is called ridge system (Montgomery, 2001). 
The stationary point can be found by using matrix algebra. The fitted second-order model of Eq. 
(2.3) above can be expressed in matrix form as follows: 

Bxx'bx'βy 0 ++= ˆˆ         (4.1) 

where 
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That is,b  is a (kx1) vector of the first order regression coefficients and B  is a (kxk)symmetric 
matrix whose main diagonal elements are the pure quadratic coefficients ( )iib  and whose off -

diagonal elements are one-half the mixed quadratic coefficients ( ),ˆ jiij ¹b (Montgomery, 2001). 

The derivative of ŷ with respect to the elements of the vector x equated to zero is 

02Bxb
x

ˆ 2

=+=
D
yD

        (4.2) 

The stationary point is the solution to equation (4.2), that is 
bB-x -1

2
1

0 =          (4.3) 

By substituting equation (4.3) into equation (4.1), we can find the predicted response at the 
stationary point as 

bxˆˆ '
02

1
00 += by         (4.4) 

 
Using Excel package, the calculations for locating the stationary point for the response Yield are as 
follows.  
Now from the fitted regression equationabove, we have our B in equation (4.2) to be: 
 
 
 

0.41 0.387 0.137 0.075 
0.387 -1.59 0.312 0.25 
0.137 0.312 -1.54 -0.05 

B = 
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0.075 0.25 -0.05 -0.94 
 
The inverse of B is -1B , given as 
 

1.800809 0.531824 0.259138 0.27134 
0.531824 -0.52531 -0.05605 -0.0943 
0.259138 -0.05605 -0.63894 0.039754 
0.27134 -0.0943 0.039754 -1.06937 

 
The kx1 vector of the first order regression coefficients,b , is given by 

yXXX ')'( 1-=b . That is, 

1.338041 
2.670601 
2.133629 
1.280457 

 
And from equation (4.3), the stationary point is given by 
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That is, 586615.0x,557663.0x,46582.0x,36509.2x 04030201 ===-= , approximately. 

In terms of the natural variables (time, volume, concentration and temperature), the stationary 
point is  

5
20
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which yields t = 1.82545 = 1.83 minutes of reaction time, V = 8.66455 = 8.66 liter solvent volume, 
Conc = 96.67299 = 96.67 percent of ethanol concentration, and T = 22.93308 = 22.93 ºC 
temperature. 
We can see that the stationary point is within the region of exploration for fitting the second-order 
model. 
 
The predicted response at the stationary point is given by equation (4.4) as 

bxˆˆ '
02

1
00 += by . That is,  

-1B = 

b= 
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Therefore, the predicted response at the stationary point is 21.47ŷ =yield . 

 
Characterizing the Response Surface 
The simplest way to characterize a response surface is to construct a contour plot of the response 
as a function of a pair of the variables. Figure 3.2 below gives the two-dimensional contour plot of 
the yield as a function of a pair of each of the four input variables. Since we have more than three 
process variables, the interpretation of the contour plot is a little bit complicated here. However, it is 
clear from examining figure 3.2 that each of the main factors is related to the response variable 
Yield at their high levels.  
 
At this point we adopt a more formal analysis to determine whether the stationary point above is a 
point of maximum or minimum response or a saddle point. Transformingthe model into a new 
coordinate system with the origin at the stationary point 0x , we have the fitted model  

2
44

2
33

2
22

2
110ŷŷ wlwlwlwl ++++=     (5.1)               

called the canonicalform of the model.  Where the { iw } are the transformed independent variables 

and the { il } are constants, which are just the eigenvalues or characteristic roots of the matrix B 

(Montgomery, 2001). 
 Now, the eigenvalues 4321  and,,, llll  are the roots of the determinantal equation 

   0I - B =l  

That is,  

0

94.005.025.0075.0

05.054.1312.0137.0

25.0312.059.1387.0

075.0137.0387.0410

=

---

---

--

l

l
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Then by means of computer software (Mapple 13), this gives us 

0176002089.1508999116.0385593.366.3 234 =--++ llll  
 
The roots of this equation are  

943183530.1 and,345987115.1,8811205241.0,5102911689.0 4321 -=-=-== llll  
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And the canonical form of the fitted model is  
2
4

2
3

2
2

2
1 94318.134599.188112.051029.047.21ŷ wwww ---+=  

Since the { il } have different signs we conclude here that the stationary point 0x is a saddle point. 

 
Figure 3.1:  Residual Plot of Purified Lecithin Yield 
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Figure 3.2:  Contour Plot of Purified Lecithin Yield 
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Conclusion 
Statistically designed experiments are highly efficient in that they give a fixed amount of information 
with much less effort than the classical one-variable at-a-time approach and many of them give 
additional information about interaction as a bonus. Response surface methods (RSM) provide 
statistically-validated predictive models that can then be manipulated for finding optimal process 
configurations. Second-order model describes quadratic surfaces, and this kind of surface can take 
many shapes. Therefore, response surface can represent maximum, minimum, ridge or saddle point.  
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Our analysis results show that each of the four main effects and the quadratic terms, ,, 22 CB  
and interaction terms AB,BC and BD significantly contribute to the response model at α = 0.05. The 
Analysis of Variance table indicates that there are significant interactions between the factors at 0.05 
level of significance. The small p-values for the interactions and the squared terms suggest there is 
curvature in the response surface. 
 
A Central Composite Design (CCD) was used for the optimization of process conditions. From the 
present study, it is evident that the use of statistical process condition optimization approach, 
response surface methodology has helped to locate the most significant conditions with minimum 
effort and time. In addition, it has also proved to be useful in increasing yield. Only 25 experiments 
were necessary and the obtained model was adequate (P < 0.001). By solving the regression 
equation, the optimum process conditions were determined.Itwas found that the estimated optimum 

response (Yield) of deoiled rapeseed lecithin is 47.21ˆ =Y at the stationary point (t = 1.82545 = 
1.83 minutes of reaction time, V = 8.66455 = 8.66 liter solvent volume, Conc = 96.67299 = 
96.67 percent of ethanol concentration, and T = 22.93308 = 22.93ºC temperature). This is the 
maximum yield obtained at the optimized process conditions. 
 
Also, the residual plots drawn do not indicate any problems with the model. The two-dimensional 
contour plots of the yield as a function of pairs of the four input variables indicate that each of the 
main factors is related to the response variable Yield at their high levels. The located stationary 
point is within the region of exploration for fitting the second-order model. The canonical analysis 
performed shows that the located stationary point is a saddle point. Therefore RSM is a critical 
technology in developing new processes and optimizing their performance. The objectives of quality 
improvement, including reduction of variability and improved process and product performance, can 
often be accomplished directly using RSM. 
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APPENDIX: The Design Matrix 
factor 
run no. t V C T Yield 
1 -1 -1 -1 -1 12.6 
2 1 -1 -1 -1 13 
3 -1 1 -1 -1 14 
4 1 1 -1 -1 17.4 
5 -1 -1 1 -1 15.6 
6 1 -1 1 -1 17 
7 -1 1 1 -1 19 
8 1 1 1 -1 24 
9 -1 -1 -1 1 14 
10 1 -1 -1 1 15.4 
11 -1 1 -1 1 17.4 
12 1 1 -1 1 21.4 
13 -1 -1 1 1 16.6 
14 1 -1 1 1 18.6 
15 -1 1 1 1 22.4 
16 1 1 1 1 27.6 

17 
-
1.414 0 0 0 20.6 

18 1.414 0 0 0 23.4 
19 0 -1.414 0 0 13.4 
20 0 1.414 0 0 22.6 
21 0 0 -1.414 0 15.6 
22 0 0 1.414 0 20.6 
23 0 0 0 -1.414 17.6 
24 0 0 0 1.414 21 
25 0 0 0 0 22.6 

 


