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Abstract 
Weight plays a serious challenge in designing the attitude control system for the small satellites. 
This has reduced the chances of using sophisticated active control mechanism like the 
actuators, momentum exchange device and gyros for precision control. Gravity gradient 
stabilisation is suitable for a small satellite because of its light weight, but with a degree of 
inaccuracy. The accuracy is enhanced when used with active dampers like the magnetic 
torqrod. Any oscillation in the system is damped within a short time using a state feedback 
control law to avoid loss of communication between the satellites and their control base station. 
The concern of this work is to use an optimal Linear Quadratic Regulator (LQR) control 
technique, to dampen the associated vibration in the gravity gradient stabilised small satellite in 
the LEO orbit within as short a time as possible, and to show that an autonomous control of 
small satellite is possible using magnetic torquing only.   
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Introduction 
Small satellites have gained increased popularity since the early eighties, due to the 
technological advancement in micro-electronics, their relative low cost, and fast turn-around 
time (from contract to launch). Nevertheless, this comes at the cost of less powerful sensors 
and actuators, as well as reduced computational power, due to size and weight limitations 
(Gottfried, 2004). A satellite in orbit is subjected to various kinds of external disturbances 
classified as either body or traction forces, Kleanthis (2007). These disturbances can alter the 
satellite orientation with respect to the orbital frame. The Attitude Determination and Control 
System (ADCS) is an integral part of the satellite operation. It provides continuous information 
on the relative pointing of the satellite as well as maintains a three-axis stabilised orientation of 
the satellite, with the bottom part of the satellite facing the nadir direction for continuous 
communication of the satellite with the ground station. However, the ADCS has traditionally 
been too complex and expensive for use in small satellites because of heavy weight and 
complexity. But these satellites must be stabilised in their orbits within a short time when 
disturbed for effective communication with the base station, hence, an engineering challenge 
on attitude control system. 
 
Passive stabilisation techniques (gravity gradient method) offered a way of providing some 
control while staying in compliance with the satellite’s power and mass requirements since no 
energy is required for operation (although some stored energy is required during the 
deployment of the boom). This system operates in open loop (i.e. no control feedback 
information is provided from attitude sensors) with low accuracy. However an active control 
system (magnetorquer) employs actuators to generate a control torque to the satellite which 
provides position and rate information to close the loop of the control system. By using 
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feedback information to fine tune the control system, the performance values of the gravity 
gradient attitude control of small satellite will be increased.  
 
Gravity Gradient Stabilisation 
The gravity gradient stabilisation of a satellite has been considered as a very attractive method 
at the beginning of the space age due to its intrinsic simplicity, reliability and low cost of 
implementation. The main drawback of this passive method of control as explained by Lewis 
(1989) is its lack of accuracy and the inability to stabilise the satellite oscillations. The structure 
of a gravity gradient boom is shown in Figure 1.  
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Figure 1: Gravity gradient boom structural arrangement with associated forces 

 
Gravity-gradient stability uses the inertial properties of a satellite to keep it pointed towards the 
earth. It provides the restoring or stabilising torque but does not damp the oscillation.   
 
Dampers 
Dampers are devices used to control oscillation. A common and cheap method used to reduce 
the undesired oscillations in the gravity gradient stabilisation of a satellite is by the use of 
passive dampers (Fleeter and Warner, 1989), even though the time to appreciably decrease the 
oscillatory motion might be very long. For this reason active dampers, like the magnetic 
torqrods, have been used in the control system of satellite, which interacts with the earth’s 
magnetic field to produce the needed moments to counteract external disturbances to the 
satellite. Ouhocine et al. (2004) compared passive and active dampers for a gravity-gradient 
stabilised small satellite attitude control methods. They designed a Proportional-Derivative (PD) 
control algorithm used to damp the satellite oscillations around its equilibrium position. This 
work uses optimal control technique to design a Linear Quadratic Regulator (LQR) controller for 
a gravity gradient stabilised satellite. 
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Geomagnetic Field Model and Magnetic Control 
One of the important applications of the geomagnetic field is in the satellite attitude control 
system. The interaction between the geomagnetic field and the magnetic dipole moment 
generated within the satellite generates torque that can be used to control the satellite’s 
attitude. This technique has been widely used because it is relatively lightweight; it presents 
low power consumption and is extremely inexpensive compared to other methods of control 
(Sidi, 1997). The modelling of geomagnetic field can be in analytical form (with Gaussian 
coefficients obtained from International Geomagnetic Reference Field (IGRF)) or simplified form 
(Mohd and Varatharajoo, 2006).  
 
The control torque is influenced by orbit altitude and the residual satellite magnetic field and 

geomagnetic field. The torque mT  generated is given in equation (1) assuming that both the 

residual satellite magnetic field and geomagnetic field are orthogonal. 

mT M B= ´                                                                                         ...1 

where M  is the magnetic moments caused by permanent and induced magnetism and B  is 
the geomagnetic field. 
 
The interaction between the magnetic moment Mand the magnetic field B , and the generated 

torque mT  is shown in Figure 2 
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Figure 2: Interaction between the magnetic moment Mand the magnetic field B , 

and the generated torque mT   

 
Optimal Control and Linear Quadratic Regulator (LQR) 
Linear Quadratic Regulator is a method in modern control (optimal control) theory (Kristin et al, 
2001) that uses state-space model approach to analyse such a dynamic system. These models, 
which are mathematical representations of the satellite dynamics, are used to study the 
dynamic response of real systems (Roland, 2001). The LQR control leads to linear control laws 
that are easy to implement and analyse. The system being controlled is assumed to be at 
equilibrium and it is desired to maintain the equilibrium despite disturbances. It is termed LQR 
because the system model is linear and the performance index is quadratic in nature. The word 
“regulator” refers to the fact that the function of the feedback is to regulate the states to zero 
(Roland, 2001). This modern control approach is different from the classical control method 
(Joseph, 2006). It is characterised by: 
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• Selecting some design matrices that are tied to the desired closed-loop performance 
• Introducing an intermediate quantity: the solution to an algebraic equation. 
• Solving a matrix differential equation 
• Obtaining a guaranteed solution that stabilizes the system 
• Obtaining very little insight into the robustness or structure of the closed-loop system. 

 
The LQR-strategy is based on defining a cost function (Joseph, 2006) which should be 
minimised subject to the system dynamics and then generating a feedback gain matrix for a 
control law. That is, the optimal control problem is to find a control law uwhich causes a 
system:  

( ) ( )x Ax t Bu t= +&                                                                              ...2 

to follow an optimal trajectory ( )tx  that minimises the performance criterion, or cost function 

J , in the interval [ ]0,t T  defined in equation (3) as 

( )
0

1
2

T

t

J x Qx u Ru dt¢ ¢= +ò                                                                     ...3 

Where, ( )x t  is the state, ( )u t  is the input and x& is the rate of change of the state of the 

system. Also matrix A is an n n´  input square matrix and B is an n m´  control matrix. Both 
matrices Q and R are assumed to be positive semi-definite and positive definite respectively, 
and they are symmetric ( 0, 0 )Q R all symmetric³ > . Q and R are weighting matrices, or 
design parameters, where the state-cost matrix,Q , weights the states while the performance 
index matrix, R , weights the control effort. If Q  is increased while R  remains constant, the 
settling time will be reduced as the states approach zero at a faster rate. This means that more 
importance is being placed on keeping the states small at the expense of increased control 
effort. If R  is very large relative toQ , the control energy is penalised very heavily. The 
controller is obtained from the solution of a matrix Riccati equation (Roland, 2001): 

  
1 0 ( )Q AP PA PBR BP asT-¢ ¢+ + - = ®¥                                                   ...4  

P  is a symmetric, time-varying positive definite matrix and it is the solution to the matrix 
Riccati equation of equation (4). 
Where   
  1K R B P- ¢=                                                                                           ...5  
is the controller gain. And the controller is 
 u Kx= -                                                                                           ...6 
taking the Ref as zero (Figure 3).The closed loop system is thus 
   *A B K-                                                                                     ...7 
Details on optimal and robust control system design are found in Roland (2001). 
The schematic of this type of control system is shown in Figure 3. 
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Figure 3: Schematic diagram of system with feedback and gain 

 
Satellite Attitude System Model 
The attitude model of the satellite includes both the kinematics and the dynamics of the 
satellite. The kinematics defines entirely the change in the orientation of the satellite 
irrespective of the forces acting on the satellite, while the dynamics defines the time dependent 
parameters as a function of the external forces acting on the satellite.  
 
Attitude Dynamics 
The attitude dynamics equation can be analysed using the operator (Sidi, 1997) in equation (8): 

i b
A A Aw= + ´& &                                                                                          ...8 

This states that the rate of change of a vector A as observed in a fixed reference frame (inertial 
frame) equals the rate of change of the vector as observed in a rotating coordinate system 
(body frame) with angular velocity w , plus the vector product Aw´ . 
The rotational equations for a rigid body are derived by beginning with the rotational equivalent 
of: 

h g=&                                                                                              ...9 
where h is the angular momentum about the mass centre, and g  is the torque (gravity 

gradient and magnetic, m ggT T+ ). This relationship can be represented in matrix form using 

equation (8) as: 
b
bih h gw+ ´ =&                                                                                ...10 

For a body whose centre of mass coincides with the origin of an orthogonal triad axis frame as 
shown in Figure 4, where ,i j and k  are the respective unit vectors along the body frame axes.  
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Figure 4: Angular motion of a rigid body (Sidi,1997) 

Consider any particle im  in the body B  such that:  

i o i

i o i i o i i

R R r

and

R R r r v v rw w

= +

= + + ´ = + + ´& & &
                                                       ...11       

where w  represents the angular velocity vector of the body B  with respect to the inertial 

frame. The moment of momentum of body particle im  is: 

i i i ih r mR= ´ &                                                                                    ...12 

For a rigid body, 0ir =& , and the angular motion about the centre of mass of the body  

0
i

i im
m r =å  holds (Sidi, 1997). Hence, 

( )
i

i i i
m

b
m bi

h r r m

or

h I

w

w

= ´ ´

=

å
                                                                        ...13 

Substituting equation (13) in equation (10), we have 
b b b

m bi bi m biI I gw w w+ ´ =&                                                                       ...14 

And 
1 1b b b

bi m bi m bi mI I I gw w w- -=- ´ +&                                                                 ...15 

Using the principal axes and writing this in matrix form, we have the nonlinear Euler’s equation 
of motion as:  

ú
ú
ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê
ê
ê

ë

é

+
-

+
-

+
-

=

zzzz

yyxx

yyyy

xxzz

xxxx

zzyy

b
bi

I

g

I

II

I
g

I

II

I

g

I

II

3
21

2
13

1
32

ww

ww

ww

w&                                                                   ...16 

 



Journal of Science, Technology, Mathematics and Education (JOSTMED) Volume 7(2), April, 2011 
 

7 
 

Attitude Kinematics 
The kinematics describes the satellite’s orientation in space and is derived by the integration of 
the angular velocity (details in Sidi, 1997). The angular velocity of the satellite model can be 
described by unit quaternion and skew symmetric matrix: 

( ) ( )lim

0

1
2t

q t t q t
q Sq

tD ®

+ D -
= =

D
&                                                         ...17 

Where  

3 2 1

3 1 2

2 1 3

1 2 3

0

0

0

0

S

w w w
w w w
w w w
w w w

-é ù
ê ú-ê ú=
ê ú-
ê ú
- - -ë û

                                                            ...18 

 
Equation (17) can be rearranged to give a nonlinear attitude kinematic equation of the satellite 
as: 

[ ]

4 3 2
1

3 4 1 4
2

2 1 4
3

1 2 3

1 1
2 2 T

q q q

q q q q q I
q

q q q q
q q q

w
w w
w

´

-é ù
é ùê ú é ù- +ê úê ú= = ê úê úê ú- -ê úë ûê úê ú ë û- - -ë û

&                                     ...19 

 
The system models developed so far are nonlinear (equations (16) and (19)), and such have to 
be linearised to make the analysis of satellite attitude dynamics easier. This is done within an 
equilibrium point (Sidi, 1997). The linearised satellite attitude equation for a three-axis stability 
according to Kristin et al (2001) and Wisniewski (1996), for the satellite to always point to the 
earth with its nadir vector, given in state space form is:  

1 1

2 2
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3 3

1 1

2 2

3 3
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m m
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q q

q q
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q q

q q
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ê ú ê ú
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&
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                                                          ...20 

mB is the geomagnetic field in the satellite body frame and mB is its norm. mI  is the moment of 

inertia of the satellite and , ( )Mis the controltorque M u=% %  
where 
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zzyyxx IandII , , are the moments of inertia about the axes of the body frame and cw  is the 

orbital angular velocity. 
The input control matrix is: 

1 *mB I G-=                    ...23 

where  

( )
( )

( )

2 2 2 2 2
2 3 1 2 1 3

2 2 2 2 2
1 2 1 3 2 3

2 2 2 2 2
1 3 2 3 1 2

/ / /

/ / /

/ / /

B B B B B B B B B

G B B B B B B B B B

B B B B B B B B B

é ù+ - -
ê ú
ê ú= - + -
ê ú
ê ú- - +ë û

                                     ...24 

1 2 3B,B andB are components of the earth magnetic field in the satellite body frame.             

B1, B2 and                 
The off diagonal terms of G  have an average value of zero while the diagonal terms, 

defined as ,x y zg g and g  respectively have average values that are a function of orbit 

inclination. The dependence according to Barry (2003) is shown in Table I.  
 
Table I:  Average components of Earth Geomagnetic Field against Inclination at 

560km: IGRF 2000 (Ref.: Barry, 2003). 
    Inc. 
(degree)      xg       yg     zg  

   Inc. 
(degree)     xg      yg      zg  

0 0.967 0 0.804 60 0.739 0.857 0.39 
10 0.995 0.068 0.781 70 0.709 0.923 0.353 
20 0.922 0.256 0.711 80 0.691 0.965 0.335 
30 0.876 0.46 0.614 90 0.686 0.981 0.333 
40 0.826 0.632 0.522 100 0.691 0.965 0.335 
50 0.78 0.762 0.446 110 0.709 0.923 0.353 

 
 
Results and Discussion of Results 
The control law was tested by performing simulations with satellite configurations and initial 
conditions obtained from Ouhocine et al (2004) as shown Table II. The control tuning matrices 
R and Q were obtained through iterative process following expectable requirements such that 
the system damps to the desired equilibrium within limited time with allowable control effort. 
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The initial conditions for roll, pitch and yaw, and the weight matrices used in the simulations are 
shown in Table III and Table IV. 
Table II: Satellite characteristics (From:  Ouhocine et al 

(2004)
Simulation Time 40 seconds

0.0010764 rad/sec

60 degree

560km
2.5kg/ 2m

100kg/ 2m
100kg/ 2m

[ ]0, 0, 0 radDesired Euler angles
[ ], ,f q j

Orbital rate cw

Inclination b
Altitude h

Moment of inertia zI

Moment of inertia xI

Moment of inertia yI

 
Table III:  First initial condition of the satellite attitude and the weight  
  matrices for simulation 

Roll, Pitch, Yaw, in rad. [ ] 0 0 00.0524 0.0175 -0.0524 . 3 , 1 3rad = -  
Q [ ]( ). 100 100 100 0.01 0.01 0.01Diag  

R 
3 3I ´  
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Figure 5: Simulation responses for LQR controller 
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Table IV:  Second initial condition of the satellite attitude and the weight 
matrices for simulation 

Roll, Pitch, Yaw, in rad. [ ] 0 0 01.3963 1.0472 -1.3963 . 80 , 60 80rad = -
 

Q [ ]( ). 100 100 100 0.01 0.01 0.01Diag  

R 
3 3I ´  
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Figure 6: Simulation responses for LQR controller 

 
Discussion of Results 
It is observed that the LQR controller is able to damp the oscillations in the system even for 
large initial attitude displacements within as short period of time as possible. In both Figures 5 
and 6, the settling time of the roll axis, pitch axis and yaw axis was about 25sec with a 
maximum control torque of 1.55E-6Nm. Hence, the higher the angular displacement in the 
satellite attitude the higher the magnetic control torque needed to damp the oscillations. This 
also shows the robustness of the controller to attitude parameter changes and also to quickly 
restore the orientation of the satellite for efficient communication with the base station.  
 
Conclusion and Future Work 
The use of active damper to control a gravity gradient stabilised small satellite is presented in 
this paper. The modelled satellite attitude dynamics is linearised about an equilibrium point and 
transformed into a state-space equation for the application of an optimal control law-Linear 
Quadratic Regulator (LQR). As expected, the associated vibration in the gravity gradient 
stabilised small satellite was dampened within as short a time as possible which shows an 
autonomous control of small satellite using magnetic torquing only. Further work on closed loop 
tuning of the weight matrices could reap a better result. It is therefore recommended to use 
metaheuristic optimisation technique in the choice of weight matrices for future work on similar 
design. 
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