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Abstract 
This paper focuses on a dynamic system which is reviewed at equidistant points of time and at 
each review, the system is classified into one possible number of states and subsequently a 
decision has to be made. The economic consequences of the decisions taken at the review 
times (decision epochs) are reflected in costs. These properties of Markov decision processes 
are employed to study the health condition of a human life. Consequently, the optimal cost of 
transition from a poor health condition to a good health condition and the long-run fraction of 
time that the man is in a poor health condition were obtained. The result could be used to study 
the health conditions of employees in both private and public sectors of the economy to 
determine productivity and retirement. 
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Introduction 
Consider a dynamic system which is reviewed at equidistant points of time ( t = 0, 1, 2, …) at 
each review the system is classified into one possible number of states and subsequently a 
decision has to be made. The set of possible states is denoted by I. for each state  , a set 
A(i) of decisions or actions is given. The state space I and the action sets A(i) are assumed to 
be finite. The economic consequences of the decisions taken at the review times (decision 
epochs) are reflected in costs. This controlled dynamic system is referred to as a discrete-time 
Markov decision model. Markov Decision Models have been successfully applied in diverse 
industries from health Abubakar et al (2007), to a wide range of real life systems including 
inventory management, revenue management systems used nowadays by airlines and other 
industries Lautenbacher and Stidham(1999), Goto et a l(2004) and Samuelson(1969) 
respectively. The objective of this paper is to determine the optimal average cost and fraction of 
time that a man has a poor health condition in long-run, using Markov Decision model with 
policy iteration. 
 
Markov Decision Process 
According to Kurkani(1999), Puterman(1994), Goto et al (2004) and Hillier Lieberman(1980); 
we consider a Discrete Time Markov Chain (DTMC) {Xn, n = 0, 1,...}, whose transition 
probability matrix depends on the action taken An. Additionally, the system incurs in a cost c( i, 
a) when an action a is chosen at some state i. Then the joint process {(Xn, An), n=0, 1,...}, is a 
Discrete Time Markov Decision Process (DTMDP). 
 
Markov Decision Processes can be defined for finite horizon as well as for infinite horizon. The 
focus of this paper is infinite horizon problem. 
 
Let Xn be the state of the system at any time n and its state space S = {1, 2,..., M}, assumed to 
be finite. After observing the state Xn = i, an action An is taken from the set of feasible actions 

 (i.e. the actions that can be taken at that state. which we assume to be finite) in any stage 
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and  is the set of reachable states (i.e. the possible destinations when action a is taken in 
state i). 
 
First of all, it is assumed that the system has the following Marko property, 
   
We assume that the process is homogeneous, in the sense that the previous probability does 
not depend on n, and denote 

 
the probability that the system goes to state j  if action , is chosen in state 

. 
 
In order to give a description of how an action is chosen in the evolution of a DTMDP, it is 
necessary to define a decision rule, that is, a function that specifies the action  that 
must be chosen when the system is in state  in every stage.  
 
A policy is defined as a set of decision rules for each epoch of time. For infinite horizon 
problems under the homogeneity assumption stated above, and for any of the two criteria 
stated below, it can be shown that there exists an optimal policy that always chooses the same 
decision rule for every stage. Also it can be shown that there is an optimal policy depends only 
on the current state, and not on the previous history. This type of policy is called a Markov 
policy Diego et al(2006)  and Derman(1970).  
 
We define a deterministic decision rule will be denoted by  a map that assigns an 
action  to every state and a randomised policy, denoted by , will be the 
probability that an action  is chosen if the state of the system is , i.e. 

 
 
Under a given policy f, the process  behaves like a discrete time Markov chain 
(DTMC) with transition probability matrix  

, where   

 
This result is established just by conditioning on An. 
 
Whenever action a is taken in state i the system incurs an expected cost . There are three 
types of costs criteria that are typically studied for an infinite horizon DTMDP: discounted cost, 
total cost and average cost; the latter was considered in this paper. The objective is to find the 
policy f that minimizes costs according to one of the given criteria Diego and German(2006). 
 
Following Tijms(1988) the n-step transition probabilities of the Markov chain {Xn} is given by  Pij

 

(n)(R) = P(Xn = j | X0 = i), i,j Є I and n = 1,2,…  
These transition probabilities satisfy the recursion relation  

Pij 
(n+1) (R) =         

Let us say that state j can be reached from state i under policy R if Pij 
(n) > 0 for some n≥1 

 
Assumption 1: The Markov chain {Xn, n = 0, 1,2,…} has some regeneration state r (say) such 
that E(N|N0 = i) < ∞ for all i  I. where N is the first time beyond epoch 0 that the process 
makes a transition into state r. 
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Assumption 2: The expectation of the total rewards earned up to the first time beyond epoch 
0 at which the process makes a transition into state r is finite for each initial state X0 = i. This 
assumption follows directly from assumption 1 in case the average reward per unit time that  

   with probability 1                                                    (1). 

Independently of the initial state X0 = i.  
 
Where:                         =  for all   
Assumption 3:  For each stationary policy R, a state r (that may depend on R) exists which can 
be reached from any other state under policy R. 
Using finiteness of the state space, as the above assumption implies that for each stationary 
policy R the associated Markov chain {Xn} satisfies the preceding two assumptions. Thus, for 
each stationary policy R, we have  

                          =            

exists and is independent of the initial state X0 = i. the equilibrium distribution {    I} 
satisfies the system of linear equations 
 =     ,                                         (2) 

               = 1                                                                                   (3) 

 
This system of linear equations has a unique solution. Also by the ergodic relation equation (1), 
we have with probability 1. The long term average cost per unit time when using rule  

 R =                                                                            (4) 

independently of the initial state.  

Let g(R) =                                                     

 
A stationary policy R* is said to be average cost optimal if g(R*) ≤ g(R) for each stationary 
policy R.It has been observed that it is computationally not feasible to find an average cost 
optimal policy by computing the associated average cost for each stationary policy separately 
from equations (2) to (4) Tijms(1988). 
 
What is eventually used is the relative values associated with a policy R. Consider the relation               

  = g  for all  

Where Vn (i, R) denotes the total expected costs over the first n decision epochs when the initial 
state is i and policy R is used. 
Suppose that the values Vi(R), i Є I, exist such that for each  i∊I 
  Vn (i, R) = ng(R) + Vi (R) for all n large                                             (5) 
 
Note that Vi (R) – Vj(R) ~ Vn (i, R) - Vn (j, R) for n large, so that  
Vi (R) – Vj (R) measures the difference in total costs when starting in state i rather than in state 
j, given that policy R is followed. 
 
Suppose also that the average cost g(R) and the relative values Vi(R), i∊I,  
satisfy a simultaneous system of linear equations 
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                          Vn (i, R) = Ci  (Ri) + (j,R) n  and i∊I     
 
The recursion equation follows under the condition that the next state is j, the total expected 
costs over the remaining next n-1 decision epoch is Vn-1(j, R). The next state is j with probability 
Pij(Ri) when the action a = Ri is used in the starting state i, by substituting 5 in the recursion 
equation, we find, after cancelling out common terms 
                           g(R) + Vi(R) Ci (Ri) +      
yielding the value-determination equations for policy R. 
 
A rigorous way to introduce the relative values associated with a given stationary policy R is to 
consider the costs incurred until the first return to some regeneration state for policy R. we 
choose some state r such that for each initial state the Markov chain {Xn} associated with policy 
R will visit state r with probability 1 after finitely many transitions. 
 
We define for each state  
Ti  = the expected time until the first return to state r when starting in state i and using 
policy R                                                                                                                                                                                    
 
Let a cycle be the time elapsed between two consecutive visits to the regeneration state r under 
policy R, we have that Ti(R) is the expected length of a cycle. Also define, for each i I 
Ki(R) = the cost incurred until the first return to state r when starting in state i and using policy 

R. 
 
We suppose that Ki(R) includes the cost incurred when starting in state i but excludes the cost 
incurred when returning to state r. The average cost per unit time equals the expected cost 
incurred in a cycle divided by the expected length of a cycle, thus        

                                                              (6) 

 
We define the relative values  
 Wi(R) = Ki(R) – g(R)Ti(R), i I                                  (7) 
as a consequence of (6), the normalization 
 Wi(R) = 0. 
 
We state the following theorem without proof that the average cost per unit time and the 
relative values can be calculated simultaneously by solving a system of linear equations. 
 
Theorem 1 
Let R be a given stationary policy; 

a) The average cost g(R) and the relative values Wi(R), i I, satisfy the following system of 
linear equations in the unknown g and Vi, i I 

                                     (8) 
b) Let the numbers g and Vi, i I be any solution to (8) then g = g(R). And for some 

constant C, 
 for all i I 
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c) Let S be an arbitrary chosen state. Then the linear equations 8 together with the 
normalization equation  have a unique solution. 

 
The economic interpretation of the relative value shows that for any solution  to 
the value determination equation 8 the numbers  are called the relative values of the 
various starting states when policy R is used. Assuming that the Markov chain  is aperiodic, 
we have, for any two states  

 the difference in total expected costs over an infinitely long period of time by 
starting in state i rather than in state j when using policy R. 

 
In other words,  is the maximum amount that a rational person is willing to pay to 
start the system in state j rather than in state i when the system is controlled by rule R. 
 
Theorem 2 
Let g and Vi, i I be given numbers. Suppose that the policy  has the property 

                             (9) 
Then                                                                           (10) 
 
The theorem is also true when the inequality signs in (9) and (10) are reversed. 
 
Proof: suppose that a control cost of  is incurred each time the action a is chosen in 
state i, while terminal cost of Vj is incurred when the control of the system is stopped and the 
system is left behind in state j. Then 9 states that controlling the system for one step according 
to rule  and stopping next is preferable to stopping directly when the initial state is i. Since the 
property is true for each initial state, a repeated application of this property yields that 
controlling the system for m steps according to rule  and stopping after that is preferable to 
stopping directly. Thus using the notation of 

 (That is, the expected cost to be incurred at the decision epoch 
t given that X0 = i and policy R is used.) with R replaced by , we have for each initial state i I, 

                               (11) 
 
Dividing both sides of (11) by m and let m→∞ it follows that , which is to be 
proved  
 
Following Howard (1960), to improve a given policy R whose average cost g(R) and relative 
values Vi(R), i I have been computed, we apply the above theorem with  

 
Thus, by constructing a new policy  such that i I 

                                                                 
(12) 
We obtain an improved rule  according to g . In constructing such an improved 
policy  it is important to realise that for each state i separately an action  satisfy (12) can 
be determined. A particular way to find for some  an action  satisfying (12) is to 
minimize 
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(13) 
 
with respect to . Noting that (13) equals  for , it follows that (12) is 
satisfied for the action  which minimizes 13 with respect to .  
The following presents the policy – iteration algorithm Tijm(1988). 
Step 1: (initialization). Choose a stationary policy R. 
Step 2: (value-determination step). For the current rule R, compute the unique solution 

 to the following system of linear equations 
                                                           

 (14) 
                                                                                   (15) 

 
Where s is an arbitrary chosen state. 
 
Step 3: (policy-improvement step). For each state , determine an action  yielding 
the minimum in 

                                                           

(16) 
 
The new stationary policy  is obtained by choosing  with the 
convection that  is chosen equal to the old action Ri when this action yields the minimum in 
(16) 
 
Step 4: (convergence test). If the new policy  equals the old policy Ri, the algorithm is 
stopped with policy R. Otherwise go to step 2 with R replaced by . 
The policy-iteration algorithm converges after a finite number of iterations. If the policy has 
converged to stationary policy , then that policy is the average cost optimal. 
 
The Model 
Suppose that at the beginning of each day the health condition of a man is observed and 
classified as good health or poor health. If he is found to have poor health, he is given either a 
first aid/preventive treatment or curative treatment so that the health condition could change to 
good health and could attend to his usual activities  
 
Suppose also that he could be found in good health conditions i = 1,2,… N. The good health 
condition i is better than i+1. That is the condition deteriorates in time. If the present condition 
is i and does not fall ill, then at the beginning of the next day then he has good health 
conditions j with probability pij. It is assumed that his body cannot improve on its own. That is 
pij = 0 for j<i so that ∑ j ≥ i, pij = 1. Let the health condition i = N represents a poor condition 
that requires treatment taking two days. For the intermediate states i with 1<i<N there is a 
choice for him to preventively take treatment so that he could remain in good health condition 
for the present day. Let a first aid/preventive treatment takes only one day at most and a 
change from poor health to a good health (after treatment) has a good health condition i=1. 
We wish to determine a rule which minimizes the long-term fraction of time the man is taking 
treatment. 
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Let us put the problem in the frame work of a discrete-time Markov decision model. We assume 
a cost of one for each day he takes treatment, the long-term average cost per day represent 
the long-term fraction of days that he takes treatment. Also, since a treatment for poor health 
condition N takes two days and in the discrete Markov decision model the state of the system 
has to be defined at the beginning of each day. We need auxiliary state for the situation in 
which a treatment is in progress. Thus the set of possible states of his health condition is 
chosen as   
 
I = {1, 2, … N, N+1}. Here the state i with 1 ≤ i ≤ N corresponds to the situation in which an 
observation reveals good health condition i, while  state N+1 corresponds to the situation in 
which treatment is in progress already for one day. Denoting the two possible actions by       

 a =     

The set of possible actions in state i is chosen as 
A (1) = {0}, A(i) ={0,1} for 1<i<N, A(N) = A(N+1) = {1} 
 
We find that the one step transition probabilities Pij (a) are given by  

Pij (1) =1 for 1<i<N 
PN, N+1(1) = 1 = PN+1, 1 (1)  
Pij (0) = Pij for 1≤i≤N and j≥i 
Pij (a) = 0 otherwise 

 
Further, the one step costs Ci (a) are given by  
 Ci (1) =1 and Ci (0) = 0. 
 
A rule or policy for controlling the health condition is a prescription for taking actions at each 
decision epoch. 
 
In view of Markovian assumption, and the fact that the planning horizon is infinitely long, we 
shall therefore consider stationary policies. A stationary policy R is a rule that always prescribes 
a single action Ri whenever the system is found in state i at a decision epoch. 
 
The rule prescribing a treatment or poor health condition only when he has a good health 
condition for at least 5 working days is given by Ri = 0 for 1≤i<5 and Ri = 1 for 5 ≤ i ≤ N+1 . 
 
Illustration 
The average cost optimal when the number of possible working conditions equals N = 5 and 
the deterioration probabilities of the health conditions of staff in a company is given below 
 

  

 
The policy – iteration algorithm is initialized with the policy which prescribes treatment, be it a 
first aid or curative action a=1 in each state except state 1 
From equations (14) to (16), after some iterations, we obtain the minimum fraction of days that 
the staff is in a poor health condition equals 0.214; and to have assumed a cost of one unit for 
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each time of treatment we therefore have that value as the average cost optimal for the 
treatment. 
 
Conclusion 
The relative value associated with the policy obtained represent both the fraction of time in the 
long-run that the staff could be in a poor condition of health and perhaps absent from work, 
and the minimal cost incurred in the treatment. This could be determined for each staff so that 
for the staff whose value is a large contrast to that of the staff of the company could be 
considered as being in poor health condition quite often and therefore unproductive and may be 
retired. The cost obtained is not very realistic; it could be determined by other methods. 
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