
Journal of Science, Technology, Mathematics and Education (JOSTMED), 11(1), April, 2015 
 

176 
 

INTEGRATED COLLOCATION METHODS FOR SOLVING FOURTH ORDER INTEGRO-
DIFFERENTIAL EQUATIONS 

 
Jimoh, A. K.1

 & Taiwo, O. A.2 
1 Department of Statistics and Mathematical Sciences, 

College of Pure and Applied Sciences, 
Kwara State University, Malete, Nigeria 

2Department of Mathematics, Faculty of Physical Sciences 
University of Ilorin, Ilorin, Nigeria 

E-mail: abdulazeezjimoh32@yahoo.com; oataiwo2002@yahoo.com 
 Phone No: +234-803-576-8758 

 
Abstract 
Two numerical methods for solving fourth order Integro-differential equations are discussed 
in this paper. The methods are Integrated Standard Collocation Method and Integrated 
Perturbed Collocation Method. The methods are based on replacement of the highest 
derivative that appeared in the problem considered by Power series and Chebyshev 
polynomials of appropriate degree. After simplification, we then collocate the resulting 
equation at some equally spaced interior points in the interval of consideration. This results 
into system of linear algebraic equations which are then solved by Gaussian elimination 
method to obtain the values of the unknown constants that appeared in the assumed 
solution. Numerical experiments show that the methods are easy to apply and of high 
accuracy. From the results obtained, we observe that the Integrated Standard Collocation 
Method by the two bases functions perform better than the Integrated Perturbed Collocation 
Method. Also, the Integrated Standard Collocation Method involved lower order matrix than 
the Integrated Perturbed Collocation Method. 
 
Keywords: Integrated Collocation Method, Power series, Chebyshev polynomials,  

        Perturbation, Integro-Differential Equations 
 
Introduction 
The numerical solutions of  functional equations such as differential equations, integral 
equations and Integro-Differential Equations is a field of in which active research work is 
currently going on. Integro-Differential Equations occur in many areas including astronomy, 
potential theory, fluid dynamics, chemical kinetics and biological reactions (Taiwo, Jimoh & 
Bello, 2014). 
 
Most Integro-Differential Equations defy analytical approach to obtain their closed form 
solutions (Taiwo & Onumanyi, 1991). Therefore, the need to adopt numerical techniques in 
order to obtain approximate solutions to such problems cannot be over emphasized (Taiwo, 
2005; Mohamed & Khader, 2011; Sweilam, Khader & Kota, 2011; Khader & Hendy, 2012). 
Recently, several authors have investigated the numerical solutions of fourth order Integro-
Differential Equations, among which include spline functions expansion (Asady & Kajani, 
2005), Legendre pseudo-spectral method (Mustapha, 2008) and Tau numerical solution with 
arbitrary polynomial base (El-Sayed & Abdel-Aziz, 2003). 
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For the purpose of our discussion, we shall consider the general fourth order linear and non-
linear Integro-Differential Equations of the following types: 
 
(i) FredholmIntegro-Differential Equations (FIDE) 
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(ii) VolterraIntegro-Differential Equations (VIDE) 
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Here, equations (1) and (2) are subjected to the conditions 
 

14321 )(''')('')(')( gaaaa =+++ ayayayay                                                (3) 

and 
 

24321 )(''')('')(')( gbbbb =+++ bybybyby                                                (4) 

where, )0( ³iPi  are constants, ),( txk  and )(xf  are given smooth  (i.e. differentiable and 

integrable) functions in ],[ ba , )()( xy i  denotes the ith  derivative of )(xy , ia , ib , 1g  and 

2g  are real finite constants and )(xy  is the unknown function to be determined. 

 
Methodology and Techniques 
 
In this section, we shall consider the following methods for the solutions of equations  
(1) - (4). 
(i)  Integrated Standard Collocation Method, and 
(ii)  Integrated Perturbed Collocation Method. 
 
To illustrate the basic concept of the Integrated Collocation Method, we consider the 
following general non-linear system: 
 

)()]([)]([ xfxyNxyL =+                                                                             (5) 

where, L  is a linear operator, N  is a non-linear operator and )(xf  is a given smooth 

function.  
For non-linear problem, we employ the Taylor’s series linearization scheme to obtain a linear 
approximation at 00 =t . 

 
Taylor’s series linearization scheme 
Let 

)()( tyG n
y =          

(6) 
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be the non-linear part of equation (1), expanding the right hand side of equation (6) in 
Taylor’s series around the point 0t , we obtain 
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Putting 00 =t  in equation (7), we have 
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Truncating equation (8) at the term containing )(' ty , we have 

)(')( ttytyGy +»                                                                                                (9) 

Therefore, equation (9) is a linear approximation to equation (6). 
 
Chebyshev Polynomials 
The Chebyshev polynomials of degree n  of the first kind which is valid in the interval 

11 ££- x  is defined 
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where,  
1)(0 =xT  

xxT =)(1  

and the recurrence relation of equation (10) is given by 
)()(2)( 11 xTxxTxT nnn -+ -= ,         1³n .                                                        (11) 

For interval ],[ ba , we have 
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and this is satisfied by the recurrence relation 
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Integrated Standard Collocation Method by Power Series Approach (ISCMPS) 
In order to apply this method to solve equation (1) together with the initial conditions given 
in equations (3) and (4), we assumed the power series solution given by  
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Equation (1) is re-written as 
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Substituting equations (14) – (18) into (19), we obtain 
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where, 
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Expanding and simplifying equation (16), we obtain 
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After evaluating the terms involving integrals in equation (25) and with further simplification, 
we then collocate the left-over at the point zxx = , we obtain 
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where, 
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Putting equation (27) into (26), we obtain (N+1) algebraic equations with (N+5) unknown 
constants. Four extra equations are obtained using the initial conditions given in equations 
(3) and (4). Altogether, we have (N+5) algebraic equations with (N+5) unknown constants. 
This system of (N+5) algebraic linear equations is put in vector form as bXA = and then 

solved using Gaussian elimination method to obtain the unknown constants )0( ³iai and 

sci ' . These values are then substituted into our assumed solution to obtain the 

approximate solution. 
 
Integrated Perturbed Collocation Method by Power Series Approach (IPCMPS) 
Again, we apply the Integrated Perturbed Collocation method using Power series as our 
basis function to solve equation (1) together with the initial conditions given in equations (3) 
and (4). 
We assume the solution of the form 
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Integrating equation (28) successively, we obtain   
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)4,3,2,1( =iit are four free tau parameters to be determined along with the constants sai '  

and )(xTN is the Chebyshev polynomials of degree N  as discussed in section (2.2).  

Substituting equations (28) – (32) into equation (19), we obtain 
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Expanding and simplifying equation (34), we obtain 
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After evaluating the terms involving integrals in equation (35) and with further simplification, 
we then collocate the left-over at the point zxx = , we obtain 
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Putting equation (38) into (37), we obtain (N+5) algebraic equations with (N+9) unknown 
constants. Four extra equations are obtained using the initial conditions given in equations 
(3) and (4). Altogether, we have (N+9) algebraic equations with (N+9) unknown constants. 
This system of (N+9) algebraic linear equations is put in vector form as bXA = and then 

solved using Gaussian elimination method to obtain the unknown constants )0( ³iai and 

sci ' and the parameters si 't . These values are then substituted into our assumed solution 

to obtain the approximate solution. 
 
Remarks: Using Chebyshev Polynomials as bases functions 
We replace the Power series in the assumed solutions given by equations (14) and (28) by 
their Chebyshev polynomial equivalents for the two methods discussed in this article. 
 
Numerical Examples 
In this section, we demonstrate both the Integrated Standard Collocation and Integrated 
Perturbed Collocation Methods to solve some linear and non-linear fourth order Integro-
differential equations. This class of problems commonly appear in many physical and 
biological applications such as heat transfer, diffusion process and biological species 
coexisting together with increasing and decreasing rates of generating. 
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Remark: We define error used as 
bxaxyxyError N ££-= |:)()(| for ..,.........3,2,1=N  

Example 1:Consider the fourth order linear VolterraIntegro-differential equation 
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subject to the boundary conditions 
1)0( =y ,    ey += 1)1( ,       2)0('' =y ,        ey 3)1('' = . 

The exact solution of this problem is  
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Example 2: Consider the fourth order linear FredholmIntegro-differential equation 
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Example 3: Consider the fourth order non-linear VolterraIntegro-differential equation 
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subject to the boundary conditions 
1)0( =y ,    ey =)1( ,       1)0('' =y ,        .)1('' ey = . 

 
The exact solution of this problem is  
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Tables of Results 
Table 1a: Numerical Results for Example 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 1b: Numerical Results for Example 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

x Exact        Integrated Standard Collocation Method 
Power Series   Chebyshev Polynomials 
N=4               Error              N=4               Error 

0.0 1.00000 1.00000       0.00000 1.00000       0.00000 
0.1 1.11052 1.11053       1.00E-5 1.11053       1.00E-5 
0.2 1.24428 1.24429       1.00E-5 1.24429       1.00E-5 
0.3 1.40496 1.40497       1.00E-5 1.40497       1.00E-5 
0.4 1.59673 1.59674       1.00E-5 1.59674       1.00E-5 
0.5 1.82436 1.82437       1.00E-5 1.82437       1.00E-5 
0.6 2.09327 2.09326       1.00E-5 2.09326       1.00E-5 
0.7 2.40963 2.40962       1.00E-5 2.40962       1.00E-5 
0.8 2.78043 2.78042       1.00E-5 2.78042       1.00E-5 
0.9 3.21364 3.21363       1.00E-5 3.21363       1.00E-5 
1.0 3.71828 3.71828       0.00000 3.71828       0.00000 

x Exact         Integrated Perturbed Collocation Method 
Power Series    Chebyshev Polynomials 
N=4               Error N=4            Error 

0.0 1.00000 1.00000         0.00000 1.00000    0.00000 
0.1 1.11052 1.11053         1.00E-5 1.11053    1.00E-5 
0.2 1.24428 1.24429         1.00E-5 1.24429    1.00E-5 
0.3 1.40496 1.40497         1.00E-5 1.40497    1.00E-5 
0.4 1.59673 1.59674         1.00E-5 1.59674    1.00E-5 
0.5 1.82436 1.82437         1.00E-5 1.82437    1.00E-5 
0.6 2.09327 2.09326         1.00E-5 2.09326    1.00E-5 
0.7 2.40963 2.40962         1.00E-5 2.40962    1.00E-5 
0.8 2.78043 2.78042         1.00E-5 2.78042    1.00E-5 
0.9 3.21364 3.21363         1.00E-5 3.21363    1.00E-5 
1.0 3.71828 3.71828         0.00000 3.71828    0.00000 
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Table 2a: Numerical Results for Example 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 2b: Numerical Results for Example 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

x Exact      Integrated Standard Collocation Method 
Power Series  Chebyshev Polynomials 
N=4           Error N=4               Error 

0.0 0.000000 0.000000     0.000000  0.000000       0.000000 
0.1 0.129489 0.129489     0.000000 0.129489       0.000000 
0.2 0.257191 0.257191     0.000000 0.257191       0.000000 
0.3 0.381319 0.381318     1.000E-6 0.381318       1.000E-6 
0.4 0.500085 0.500084     1.000E-6 0.500084       1.000E-6 
0.5 0.611702 0.611701     1.000E-6 0.611701       1.000E-6 
0.6 0.714383 0.714382     1.000E-6 0.714382       1.000E-6 
0.7 0.806340 0.806339     1.000E-6 0.806339       1.000E-6 
0.8 0.885787 0.885785     2.000E-6 0.885786       1.000E-6 
0.9 0.950936 0.950934     2.000E-6 0.950935       1.000E-6 
1.0 1.000000 0.999997     3.000E-6 0.999999       1.000E-6 

x Exact Integrated Perturbed Collocation Method 
Power Series  Chebyshev Polynomials 
N=4           Error N=4               Error 

0.0 0.000000 0.000000     0.000000  0.000000       0.000000 
0.1 0.129489 0.129489     0.000000 0.129489      0.000000 
0.2 0.257191 0.257191     0.000000 0.257191       0.000000 
0.3 0.381319 0.381318     1.000E-6 0.381318       1.000E-6 
0.4 0.500085 0.500084     1.000E-6 0.500084       1.000E-6 
0.5 0.611702 0.611701     1.000E-6 0.611700        2.000E-6 
0.6 0.714383 0.714382     1.000E-6 0.714381        2.000E-6 
0.7 0.806340 0.806339     1.000E-6 0.806337        3.000E-6 
0.8 0.885787 0.885785     2.000E-6 0.885782        5.000E-6 
0.9 0.950936 0.950934     2.000E-6 0.950929        7.000E-6 
1.0 1.000000 0.999997     3.000E-6 0.999990         1.000E-5 
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Table 3a: Numerical Results for Example 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 3b: Numerical Results for Example 3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Discussion of Results and Conclusion 
In this paper, we have been able to show that both the Power Series and Chebyshev 
Polynomial Integrated Collocation methods can efficiently solve linear and non-linear fourth-
order integro-differential equations with high accuracy. Moreover, the results obtained by 
Power series are in close agreement with the results obtained by Chebyshev polynomials. 
Also, the Integrated Standard Collocation Method produced better results than the Perturbed 
Integrated Collocation method and the methods yield the desired accuracy when the results 
are compared with the exact solutions.  
 
 
 
 
 

x Exact Integrated Standard Collocation Method 
Power Series Chebyshev Polynomials 
N=4           Error N=4               Error 

0.0 1.00000 1.00000       0.00000 1.00000       0.00000 
0.1 1.10517 1.10500       1.70E-4 1.10502       1.50E-4 
0.2 1.22140 1.22107       3.30E-4 1.22112       2.80E-4 
0.3 1.34986 1.34938       4.80E-4 1.34946       4.00E-4 
0.4 1.49182 1.49124       5.80E-4 1.49134       4.80E-4 
0.5 1.64872 1.64806       6.60E-4 1.64818       5.40E-4 
0.6 1.82212 1.82143       6.90E-4 1.82158       5.40E-4 
0.7 2.01375 2.01308       6.70E-4 2.01327       4.80E-4 
0.8 2.22554 2.22495       5.80E-4 2.22516       3.80E-4 
0.9 2.45960 2.45913       4.70E-4 2.45938       2.20E-4 
1.0 2.71828 2.71796       3.20E-4 2.71824       4.00E-5 

x Exact       Integrated Perturbed Collocation Method 
Power Series Chebyshev Polynomials 
N=4            Error N=4            Error 

0.0 1.00000 1.00000       0.00000 1.00000       0.00000 
0.1 1.10517 1.10502       1.50E-4 1.10502       1.50E-4 
0.2 1.22140 1.22112       2.80E-4 1.22112       2.80E-4 
0.3 1.34986 1.34946       4.00E-4 1.34946       4.00E-4 
0.4 1.49182 1.49134       4.80E-4 1.49134       4.80E-4 
0.5 1.64872 1.64819       5.30E-4 1.64818       5.40E-4 
0.6 1.82212 1.82158       5.40E-4 1.82158       5.40E-4 
0.7 2.01375 2.01327       4.80E-4 2.01327       4.80E-4 
0.8 2.22554 2.22516       3.80E-4 2.22516       3.80E-4 
0.9 2.45960 2.45938       2.20E-4 2.45938       2.20E-4 
1.0 2.71828 2.71824       4.00E-5 2.71824       4.00E-5 
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