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Abstract 
Multicollinearity has been a serious problem in regression analysis, Ordinary Least Squares 
(OLS) regression may result in high variability in the estimates of the regression coefficients 
in the presence of multicollinearity. Least Absolute Shrinkage and Selection Operator 
(LASSO) methods is a well established method that reduces the variability of the estimates 
by shrinking the coefficients and at the same time produces interpretable models by 
shrinking some coefficients to exactly zero. We present the performance of LASSO -type 
estimators in the presence of multicollinearity using Monte Carlo approach. The performance 
of LASSO, Adaptive LASSO, Elastic Net, Fused LASSO and Ridge Regression (RR) in the 
presence of multicollinearity in simulated data sets are compared using Akaike Information 
Criterion (AIC) and Bayesian Information Criterion (BIC) criteria. A Monte Carlo experiment 
of 1000 trials was carried out at different sample sizes n (50, 100 and 150) with different 
levels of multicollinearity among the exogenous variables (ρ = 0.3, 0.6, and 0.9). The overall 
performance of Lasso appears to be the best but Elastic net tends to be more accurate 
when the sample size is large.  
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Introduction 
Multicollinearity can cause serious problem in estimation and prediction when present in a 
set of predictors. Traditional statistical estimation procedures such as Ordinary Least 
Squares (OLS) tend to perform poorly, have high prediction variance, and may be difficult to 
interpret (Brown, 1993) i.e. because of its large variance’s and covariance’s which means 
the estimates of the parameters tend to be less precise and lead to wrong inferences 
(Muhammad, Maria & Muhammad, 2013). In such situations it is often beneficial to use 
shrinkage i.e. shrink the estimator towards zero vector, which in effect involves introducing 
some bias so as to decrease the prediction variance, with the net result of reducing the 
mean squared error of prediction, they are nothing more than penalized estimators, due to 
estimation there is objective functions with the addition of a penalty which is based on the 
parameter. Various assumptions have been made in the literature where penalty of  - 
norm, - norm or both  and  which stand as tuning parameters (  ) were used to 
influence the parameter estimates in order to minimize the effect of the collinearity. 
Shrinkage methods are popular among the researchers for their theoretical properties e.g. 
parameter estimation. 
 
Over the years, the LASSO - type methods have become popular methods for parameter 
estimation and variable selection due to their property of shrinking some of the model 
coefficients to exactly zero see (Tibshirani, 1996), (Xun & Liangjun, 2013). Tibshirani, (1996) 
proposed a new shrinkage method Least Absolute Shrinkage and Selection Operator 
(LASSO) with tuning parameter which is a penalized method, (Knight, & Fu, 2000) for 
the first systematic study of the asymptotic properties of Lasso – type estimators (Xun & 
Liangjun, 2013). The LASSO shrinks some coefficients while setting others to exactly zero, 
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and thus theoretical properties suggest that the LASSO potentially enjoys the good features 
of both subset selection and ridge regression. Frank and Friedman (1993) had earlier 
proposed Ridge regression which minimizes the Residual Sum of Squares subject to 
constraint with    
 
Frank and Friedman (1993) argued that the optimal choice of parameter  yields reasonable 
predictors because it controls the degree of precision for true coefficient of  to aligned with 
original variable axis direction in the predictor space. Fan and Li (2001) Introduced the 
Smoothing Clipped Absolute Deviation (SCAD) which penalized Least Square estimate to 
reduce bias and satisfy certain conditions to yield continuous solutions. Hoerl and Kennard 
(1970a) was first to propose Ridge Regression which minimizes the Residual Sum of Squares 
subject to constraint with   thus regarded as  - norm. Efron, Hastie, Johnstone and 
Tibshirani (2004) developed Least Angle Regression Selection (LARS) for a model selection 
algorithm (Wang & Leng, 2008), Wei and Huang (2010) study the properties of adaptive 
group Lasso. In 2006, Yuan and Lin, (2006) proposed a Generalization of LASSO and other 
shrinkage methods include Dantzig Selector with Sequential Optimization, (DASSO) (James, 
Radchenko, & Lv, 2009), Elastic Net (Zou & Hastie, 2005), Variable Inclusion and Selection 
Algorithm, (VISA) (Radchenko & James, 2008), Adaptive LASSO (Zou, 2006) among others. 
 
LASSO-type estimators are the techniques that are often suggested to handle the problem 
of multicollinearity in regression model. More often than none, Bayesian simulation with 
secondary data has been used. When the ordinary least squares are adopted there is 
tendency to have poor inferences, but with LASSO-type estimators which have recently been 
adopted may still come with its shortcoming by shrinking important parameters, we intend 
to examine how these shrink parameters may be affected asymptotically. However, the 
performances of other estimators have not been exhaustively compared in the presence of 
all these problems. Moreover, the question of which estimator is robust in the presence of a 
LASSO-type estimators of these problems have not been fully addressed. This is the focus of 
this research work. 
 
Material and method 
Consider a simple least squares regression model. 
                                                                                         (1) 

where   are exogenous,   are    random variable with mean zero and 
finite variance  is  vector. Suppose   takes the largest possible dimension , in 
other words the number of regressors may be at most  but the true p is somewhere 
between 1 and  The issue here is to come up with the true model and estimate it at the 
same time. 
 The least squares estimate without model selection is 
                                               .   
with   estimates. 
Shrinkage estimators are not that easy to calculate as ordinary least squares. Thus the 
objective functions for the shrinkage estimators: 
                                                   (2)                     

Where  is a tuning parameter (for penalization), it is a positive sequence, and 
will not be estimated, and   will be specified by us. The objective function 

consists of 2 parts, the first one is the LS objective function part, and then the penalty 
factor. 
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        Thus, taking the penalty part only 
                                             

If    is going to infinity or to a constant, the values of  that minimizes that part should be 
the case that   .  We get all zeros if we minimize only the penalty part. So the 

penalty part will shrink the coefficients to zero. This is the function of the penalty. 
  
Ridge Regression (RR) 
Ridge Regression (RR) by (Hoerl & Kennard, 1970b) is ideal if there are many predictors, all 
with non-zero coefficients and drawn from a normal distribution (Friedman, Hastie & 
Tibshirani, 2010). In particular, it performs well with many predictors each having small 
effect and prevents coefficients of linear regression models with many correlated variables 
from being poorly determined and exhibiting high variance. RR shrinks the coefficients of 
correlated predictors equally towards zero. For example, given k identical predictors, each 
would get identical coefficients equal to  the size that any one predictor would get if fit 

singly (Friedman, Hastie & Tibshirani, 2010). Ridge regression does not force coefficients to 
vanish and hence cannot select a model with only the most relevant and predictive subset of 
predictors. The ridge regression estimator solves the regression problem in [17] using    
penalized least squares: 
                                                          (3) 

Where     is the –norm (quadratic) loss function (i.e. 

residual sum of squares),  is the  of X,   is the  –norm 

penalty on , and  is the tuning parameter (penalty, regularization, or complexity) 
which regulates the strength of the penalty (linear shrinkage) by determining the relative 
importance of the data-dependent empirical error and the penalty term. The larger the value 
of , the greater is the amount of shrinkage. As the value of   is dependent on the data it 
can be determined using data-driven methods, such as cross-validation. The intercept is 
assumed to be zero in equation (3) due to mean centering of the phenotypes.  
 
Least Absolute Shrinkage and Selection Operator (LASSO) 
LASSO regression methods are widely used in domains with massive datasets, such as 
genomics, where efficient and fast algorithms are essential (Friedman, Hastie & Tibshirani, 
2010). The LASSO is, however, not robust to high correlations among predictors and will 
arbitrarily choose one and ignore the others and break down when all predictors are 
identical (Friedman, Hastie & Tibshirani, 2010). The LASSO penalty expects many 
coefficients to be close to zero, and only a small subset to be larger (and nonzero). 
 
The LASSO estimator uses the   penalized least squares criterion to obtain a sparse 
solution to the following optimization problem: 
                                                                (4) 

Where    is the  -norm penalty on , which induces sparsity in the 

solution, and   ≥ 0  is a tuning parameter. 
 
The   penalty enables the LASSO to simultaneously regularize the least squares fit and 

shrinks some components of  to zero for some suitably chosen . The cyclical 
coordinate descent algorithm, (Friedman, Hastie & Tibshirani, 2010), efficiently computes 
the entire lasso solution paths for  for the lasso estimator and is faster than the well-known 
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LARS algorithm (Efron, Hastie, Johnstone & Tibshirani, 2004). These properties make the 
lasso an appealing and highly popular variable selection method.  
 
Fused LASSO 
To compensate the ordering limitations of the LASSO, (Tibshirani, Saunders, Rosset, Zhu  & 
Knight, 2005) introduced the fused LASSO. The fused LASSO penalizes the  -norm of both 
the coefficients and their differences: 

F = arg min(  –Xβ)'(  –Xβ) + λ1  +   λ              (5) 

                       β 
where λ1 and λ2 are tuning parameters. They provided the theoretical asymptotic limiting 
distribution and a degrees of freedom estimator. 
 
Elastic Net 
Zou and Hastie (2005) proposed the elastic net, a new regularization of the LASSO, for the 
unknown group of variables and for the multicollinear predictors. The elastic net method 
overcomes the limitations of the LASSO method which uses a penalty function based on 

                                    

Use of this penalty function has several limitations. For instance, in the "large p, small n" 
case the LASSO selects at most n variables before it saturates. Also if there is a group of 
highly correlated variables, then the LASSO tends to select one variable from a group and 
ignore the others. To overcome these limitations, the elastic net adds a quadratic part to the 
penalty , which when used alone is ridge regression (known also as Tikhonov 
regularization). The elastic net estimator can be expressed as 
                     EN = arg min(  –Xβ)'(  –Xβ) + λ1 + λ₂ 2                  (7) 

                                     β 

where λ1 and λ2 are tuning parameters. As a result, the elastic net method includes the 
LASSO and ridge regression: in other words, each of them is a special case where      

   
 
Adaptive LASSO 
Fan and Li (2001) showed that the LASSO can perform automatic variable selection but it 
produces biased estimates for the large coefficients. Zou (2006) introduced the adaptive 
LASSO estimator as 
             AL = arg min(  –Xβ)'(  –Xβ) + λ                                   (8) 

with the weight vector   = 1/|  | where  is a √n consistent estimator such as (OLS) 
and  
γ > 0.  where   are the adaptive data-driven weights, which can be 

estimated by, 
    where  is a positive constant and    is an initial consistent estimator 

of obtained through least squares or ridge regression if multicollinearity is important (Zou, 
2006). The optimal value of    can be simultaneously selected from a grid of 
values, with values of  selected from {0.5, 1, 2}, using two-dimensional cross-validation 
(Zou, 2006). The weights allow the adaptive LASSO to apply different amounts of shrinkage 
to different coefficients and hence to more severely penalize coefficients with small values. 
The flexibility introduced by weighting each coefficient differently corrects for the 
undesirable tendency of the lasso to shrink large coefficients too much yet insufficiently 
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shrink small coefficients by applying the same penalty to every regression coefficient (Zou, 
2006). 
 
Monte Carlo Study 
In this section we carried out simulation to examine the finite sample performance for 
LASSO, Adaptive LASSO, Elastic LASSO, Fused LASSO and Ridge Regression using AIC  and 
BIC. 
 
We infected the data with multicollinearity by generating sets of variables of sample sizes n 
(n = 50, 100 and 150) using normal distribution respectively. The level of multicollinearity 
among the variables are small (r = 0.1 – 0.3), mild ( r = 0.4 – 0.6) and serious (r = 0.7 – 
0.9). Each simulation was repeated 1000 times for consistency using R package. 
 
Table 1:  Mean AIC and BIC of the fitted model using the five methods 
 Ridge 

Regression 
Adaptive Elastic Net Fused LASSO 

N R    AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC 
50 0.1 – 

0.3 
0.4 – 
0.6 
0.7 – 
0.9 

-65.62 
-65.68 
-65.60 

-65.39 
-65.45 
-65.37 

-65.57 
-
65.79 
-65.69 

-65.35 
-
65.56 
-65.36 

-65.62 
-65.63 
-65.64 

-65.39 
-65.40 
-65.41 

-
65.64 
-65.63 
-
65.79 

-
65.41 
-65.41 
-
65.56 

-65.62 
-65.56 
-65.56 

-65.39 
-65.34 
.65.33 

100 0.1 – 
0.3 
0.4 – 
0.6 
0.7 – 
0.9 

-
67.48 
-64.58 
-67.44 

-
67.32 
-64.42 
-67.29 

-67.27 
-64.64 
-
69.61 

-67.12 
-64.49 
-
67.46 

-67.20 
-64.65 
-67.39 

-67.04 
-64.49 
-67.23 

-67.35 
-
64.87 
-68.14 

-67.20 
-
64.72 
-67.99 

-66.82 
-64.69 
-68.03 

-66.67 
-64.53 
-67.87 

150 0.1 – 
0.3 
0.4 – 
0.6 
0.7 – 
0.9 

-65.22 
-65.79 
-65.50 

-65.09 
-65.67 
-65.38 

-
65.30 
-65.64 
-
65.73 

-
65.18 
-65.52 
-
65.61 

-65.12 
-65.77 
-65.48 

-64.99 
-65.65 
-65.36 

-65.15 
-
65.94 
-65.58 

-65.03 
-
65.82 
-65.46 

-65.19 
-65.75 
-65.66 

-65.07 
-65.62 
-65.54 

 
Table 2: Summary of the result 
Sample size (n) r Best 
50 Low Lasso 
100  Adaptive Lasso 
150  Elastic Net 
50 Medium Elastic Net 
100  Lasso 
150  Lasso 
50 High Lasso 
100  Lasso 
150  Elastic Net 
 
Table 1 shows both the AIC and BIC of the fitted model using the five methods while Table 
2 presents the summary of Table 1. It is of interest to note that both criteria agreed in 
selecting the best method in all the cases considered. It can be observed that LASSO 
performed better at all the three levels of multicollinearity (small sample with low 
multicollinearity, medium sample size with medium multicollinearity and at small and 
medium sample sizes with high multicollinearity). 
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Elastic Net competed favourably with LASSO because it was also better at all levels of 
multicollinearity (high sample size with low multicollinearity, small sample size with medium 
multicollinearity and large sample size with high multicollinearity). Adaptive LASSO 
performed best only with medium sample size at low multicollinearity. Generally, it can be 
seen that LASSO performs best when the correlation is high but Elastic net tend to be more 
accurate when the sample size n is large. LASSO appears to have best overall performance 
among all the five methods. Therefore, the LASSO method is more suitable due to its 
significant advantage over others. 
 
Conclusion 
We have considered Lasso type estimators in the presence of multicollinearity in linear 
regression model. The Ordinary Least Squares (OLS) method brings about poor parameters 
estimate and produce wrong inferences. Lasso type estimators are more stable and provide 
performances better than OLS approach of parameters estimation in the case of correlated 
predictors and produce consistent solution. Elastic net performed better for large sample 
size especially for high value of multicollinearity. While the LASSO is better for medium and 
high level of multicollinearity. Performances of both Fused and Ridge regression were poor 
compared with the other methods considerd.   
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