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Abstract  
A Mathematical Model was developed for the spread and control of Lassa Lever. The disease 
free and endemic equilibrium states were obtained and analysed for stability. Key to the 
analysis is the basic reproductive number ),( 0R  which is an important threshold for disease 

control. The analysis showed that the endemic equilibrium points 1E is locally asymptotically 

stable for 0R  close to 1, and the bifurcation at 0* =p is subcritical when 0>a  
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Introduction 
Lassa fever is an acute viral Hemorrhagic fever (VHF) first isolated in a town called Lassa in 
the Yedseram River Valley in the present Borno State of Northern Nigeria in 1969 (Tara, 
2004). Lassa fever is endemic in Nigeria, Liberia, Sierra Leone, Guinea, and other West 
African countries, affecting about 2 – 3 million persons with 5000 - 10,000 fatalities annually 
(McCormick et al., 1987). Since its initial discovery in Lassa-Nigeria, rural and nosocomial 
outbreaks of Lassa fever have occurred repeatedly in other parts of Nigeria: Jos, Onitsha, 
Zonkwa, Ekpoma (Tomori et al., 1988).  
 
In 2012, 397 cases with 40 deaths were recorded cutting across 12 states of Nigeria 
(Healthmap, 2012). More recently, between August 2015 and 23 January 2016, 159 
suspected cases of Lassa fever including 82 deaths, were reported across 19 states in 
Nigeria (WHO, 2016). 
 
Promed (2006) reported outbreaks in some cities of West African countries of Sierra Leone, 
Liberia, Guinea. Lassa fever therefore appears to have 2 geographically separate endemic 
areas: The Mano River region (Guinea, Sierra Leone, and Liberia) in the West, and Nigeria in 
the East.  
 
Lassa fever is a zoonotic disease, i.e., it can be transmitted from infected animal to a 
human. The natural Reservoir of the Lassa virus is Multimammate Rat species known as 
Mastomys Natalencesis (Fisher-Hoch et al., 1995).  Because certain varieties of Mastomys 
often live in human homes, the virus is easily transmitted to humans.  Transmission 
occurs via direct contact with rat urine, faeces, and saliva; via contact with excretion- or 
secretion-infected materials; or via ingestion of excretion-contaminated food.  Victims can 
also become infected via skin breaks, and via mucous membranes from aerosol transmission 
from dust-borne particles.  In some areas, the rodents are used as a food source, thus 
providing additional exposure to the infected rat blood, as well as allowing ingestion of 
potentially contaminated meat. Eze et al., (2010) stated that Health workers become 
infected usually from contact with rodent saliva or contamination of needles. 
 
Unlike other arena viruses, Lassa virus can be fairly easily transmitted from human to 
human (WHO, 2004). Richmond (2003) stated that humans can contact the disease from 
other humans via aerosol transmission (coughing), or from direct contact with infected 
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human blood, urine, or semen. Lassa virus has been isolated from semen 6 weeks after 
acute illness; thus the virus can be transmitted to sexual partners by convalescent men 
(Tara, 2004).  
 
The symptoms of Lassa fever develop about 21 days after infection with acute illness 
involving multi organs. Specific symptoms include fever, facial swelling, muscle fatigue, 
vomiting, cough, meningitis, and hypertension. In some patients’ neurological problems, 
including hearing loss which may be transient or permanent, tremors, and encephalitis, have 
been described the (Omilabu et al., 2005). 
 
Literature  
Okuonghae and Okuonghae (2006) formulated an SIS model coupled to a population of rat 
species, for the transmission of Lassa fever disease. They obtained the equilibrium states of 
their model and examined them for endemic and epidemic situations. Further, they 
calculated the basic reproductive number for their model and gave conditions for disease 
outbreak. Ogabi, et al., (2012) developed an SIR model for controlling Lassa fever 
transmission in northern part of Edo state, Nigeria. They advocated for health policies that 
will keep the basic reproductive number 0R  below 1, thereby keeping the transmission of 

the disease under control. 
 
The Lassa fever model developed by (Bawa et al., 2013) is a major shift from the first two 
papers cited. The researchers divided the human population into susceptible human HS , the 
Infected human HI , the reservoir population they divided into Infant RI and the Adult 
reservoir RA and interestingly represented the virus in the environment  by V . They 
explained that the virus compartment is generated from the urine and faeces of infected 
Human and adult reservoirs. The major parameters of their model are Hb per capital birth 
rate of Human, Rb per capital birth rate of the reservoir, Rm  per capital natural death rate of 
Human, Hm per capital death rate of the reservoir, Hd Lassa fever induced death rate, Rd  
mortality death of the reservoir due to hunting, 1b effective contact rate for human, 

2b effective contact rate between reservoir and human, g recovery rate of Infected human 
and s progression rate from Infant to adult reservoir. They recommended that efforts 
should be made to keep the basic reproductive number below unity to ensure that the virus 
is contained. Tolulope et al., (2015) complemented the work of Bawa et al., (2013) by 
introducing the quarantine parameter )( QI  and assume that the virus confers permanent 

immunity to the sufferers upon recovery. The rest of their parameters are the same with 
that of Bawa et al., (2013).  James (2015) developed a mathematical model of Lassa fever 
using three ordinary differential equations; they discovered that the zero equilibrium state is 
stable when the birth rate of the human population is less than the death rate. Their 
analysis also gave the condition for the non-zero equilibrium to be unstable. 
 
Onuorah et al. (2016a) developed a Lassa fever model using the sex structure approach. 
Their model represented the transmission dynamics of the Lassa fever disease using a set of 
ordinary differential equations. The total human population at time t  denoted by )(tN H  
was sub-divided into four (4) mutually exclusive sub-populations of Susceptible Male )(1 tS , 
Infected Male )(1 tI , Susceptible Female )(2 tS ,  Infected Female )(2 tI , such 
that )()()()()( 2211 tItStItStN H +++= . Similarly, the total Natural Reservoir/host 
population at time t , denoted by )(tN R  was sub-divided into dormant Reservoir )(1 tR , 
active Reservoir )(2 tR , such that )()()( 21 tRtRtNR += . Their model had the following 
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assumptions. Susceptible individuals, male/female can be infected via interaction with the 
active Reservoir (Mastomys Natelensis), and via sexual interaction with opposite sex. Two 
major controls were considered, the use of condom to reduce contact via sexual interaction 
and the use of pesticide or Rat poison to kill the natural Reservoir (Mastomys Natelensis). 
And finally, horizontal transmission for human and vertical transmission for the Reservoir.  
 
Onuorah et al. (2016b), is an extension of Onuorah et al. (2016a), specifically, they included 
a schematic diagram, sensitivity analysis, numerical computation of the basic Reproductive 
number 0R  and numerical simulation. All the works cited above did not consider the 

endemic equilibrium (equilibrium state where at least one of the infected compartments is 
non-zero) of their Lassa fever model. In this work we intend to bridge this gap identified, by 
extending the analysis of Onuorah et al (2016a) to endemic equilibrium states of the various 
state variables of our model. We also carried out bifurcation analysis.  
 
Methodology 
Parameters of the Model  

Hb  The natural birth rate of human population 

Rb  The natural birth rate of vectors 
q  The proportion of human birth that is male 0 < θ < 1 
r  Spectral Radius 

1a  The rate of transmission resulting from sexual interaction between infected female and 
susceptible male 

2a   The rate of transmission resulting from sexual interaction between infected male and 
susceptible female  

3a  The rate of transmission resulting from interaction between active virus Reservoir and 

susceptible male 

4a  The rate of transmission resulting from interaction between active virus Reservoir and 
susceptible female 

1c  Average number of male partners acquired by a susceptible female 

2c  Average number of female partners acquired by a susceptible male 

1m  Natural death rate of human population 

2m  Natural death rate of Reservoir population 
g  Recovery rate of infected human 
s  Progression rate from dormant to active Reservoir host 

1d  Death rate of human population due to infection 

2d  Death rate of Reservoir population due to application of pesticide 
e  Efficacy of condom 
τ Compliance of condom usage  
 
The Model  
From the assumptions above we have the following equations: 
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The total human population size is given by; 

2211 ISISN H +++=          (7) 
The total Reservoir population size is given by 

21 RRN R +=            (8) 
By adding equations (1) to (4), we have; 
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By adding equations (5) to (6), we have; 
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Basic Properties of the Model 
In this section, the basic dynamical features of the model equations (1) to (6) will be 
explored. 
 
Theorem 1 The closed set 
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D in finite time or )(tNH approaches
1m

b H , and )(tN R approaches
22 dm

b
+
R , and the infected 

variables 21 II + , 21 RR + approaches 0. Hence D  is attracting, that is all solutions in 6
+Â  

eventually entersD . Thus inD , the basic model equations (1) to (6) is well posed 
epidemiologically and mathematically according to (Hethcote, 1978). Hence it is sufficient to 
study the dynamics of the basic model equations (1) to (6) 
 
Disease Free Equilibrium (DFE)

       
 

At equilibrium states, the rate of change of the state variables with respect to time is zero, 
i.e.  
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 We define disease compartments as the Infected male, Infected female compartments that 
is 1I and .2I we let ),,,,,(),,,,,( 212211 wvuzyxRRISIS =  at disease free equilibrium, 
equating the right hand side of our model equation (1) to (6) to zero and solving with the 
above change of variable, we have our DFE  
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For the analysis of Local Stability and is Globally Asymptotically stable of Disease Free 
Equilibrium 0E  of the model, the reader is referred to Onuorah (2016b)  

At DFE, the Jacobian matrix is 
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where )1(12 eta -= cp , )1(21 eta -= cq  )( 111 gdm ++=A and )( 222 dms ++=A
 )( 223 dm +=A      

 
Basic Reproductive Number )( 0R  

We use the next generation matrix approach as described by (Driessche and Wathmough, 
2005) to derive our Basic Reproductive Number diseases. 
Here, the basic reproductive number 0R is the spectral radius of the product matrix  

IFV - , i.e.  )(0
IFVR -= r  

Our model has four Infected compartments namely the Infective male I1, Infected female I2, 
dormant Reservoir 1R  and  active Reservoir 2R ,  It follows that the matrices F  and V  for 
the new infective terms and remaining transfer terms respectively are given below: 
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Substituting the values of zx,  at equilibrium, the values of pA ,1  and q   gives 
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Endemic Equilibrium  
This is an equilibrium state where at least one of the infected compartments is non-zero. In 
order to find the Endemic equilibrium for our model equations (1) to (6), the following steps 
are taken. We let ),,,,,( ****** wvuzyxEe =  represent any arbitrary point of the Endemic 

Equilibrium of our model equations further,  
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Be the force of infection of susceptible male and susceptible female respectively. Solving our 
model equations (1) to (6) at steady state gives  
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Substituting (16) into (15) we have;  
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Thus, the positive endemic equilibria of the basic model (1) to (6) are obtained by solving 
for *

Ml  from the quadratic (29) and substituting the results (positive values of *
Ml into the 

expressions in (16). Clearly, the coefficient 9k  of (29), is always positive, and 11k  is positive 

(negative) if 0R  is less than (greater than) unity, respectively. 

 
Asymptotic Global Stability of Endemic Equilibrium 
We used the Centre Manifold theorem as described in (Castillo- Chavez and Songs, 2004), 
for Bifurcation analysis to show that our model equations (1) to (6) is globally asymptotically 
stable (GAS).   
 
In order to apply this theorem, we first make the following change of variables. Let  
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 Then our model equations (1) to (6) can be written in the form  
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Now the Jacobian of the model equations (31) to (36) at disease free equilibrium which is; 
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The basic reproductive number in terms of the new variables is 
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To solve for V we reduce )( 0EJ , to upper triangular matrix using elementary row operation  

to have 
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Solving for v in equation (39) we have   
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05 =v        (45) 

66 vv =        (46) 

Left eigenvalue )(.
0EJw  

The left eigenvalue of )(
0EJ are transposes of the right eigenvectors of the transposed 

matrix T
EJ )(

0
, since their defining equation is equivalent to 

  wwJ TT
E l=)( 0

, thus, wwJ E l=)( 0
 

 that is 
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To solve for W we reduce )( 0EJ , to lower triangular matrix using elementary row reduction to 

have 
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where  
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Solving for w in equation (48), we have
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Computation of a and b 
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For our model, we have 6=n , 4,3,2,1=k representing the susceptible compartments, 

21,SS , the dormant and active reservoir compartments 21 , RR therefore, 

.00 65316531 ====Þ==== aaaavvvv  We therefore compute the associated non-zero 

partial derivatives of f  at the DFE for 42 ff =   
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Therefore the associated non-zero partial derivative of f at DFE for the sign of a are given 

by;
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Substituting (59) into (56), we have  
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Simplifying, we have; 
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Clearly, if 0,0,0,0,,0,0 654321 >>>>>> wwwwww , then, 0>a . 

 Otherwise, 0,0,0,0,0,0 654321 <<<<<< wwwwww  then, 0<a  
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For 6,5,3,1=k  00 65316531 ====Þ====Þ bbbbvvvv . We therefore compute the 

associated non-zero partial derivatives of f  at the DFE for 42 ff =   

where *p=f  
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Substituting the derivative of (64) and (65) into (63) we have b as; 
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0,0,0,0 1441 >>>> wwxx . Hence, 0>b  

Thus we claim the following   
 
Corollary 1  
If 10 >R  

The endemic equilibrium points 1E is locally asymptotically stable for 0R  close to 1  

The bifurcation at 0* =p is subcritical when 0,0 <> ba  
 
Conclusion  
A Mathematical Model was developed for the spread and control of Lassa Lever.  Key to our 
analysis is the basic reproductive number ),( 0R  which is an important threshold for disease 

control. The disease free equilibrium (DFE) and the endemic equilibrium were obtained. In 
analyzing the endemic equilibrium states for stability we also adopted the method of 
(Castilo- Chavez and Song, 2004), which entails finding the Right and Left eigenvalues. The 
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analysis shows that the endemic equilibrium points 1E is locally asymptotically stable for 0R  

close to 1, and the bifurcation at 0* =p is subcritical when 0>a  
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