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Abstract  
Concern about pathogen contamination of groundwater and the use of microbial agents in 
the cleanup of groundwater has highlighted the need for an improved understanding of the 
fate and transport of microbes in the subsurface. This paper presents an analytical method 
to describe the physical, chemical and biological processes governing the simultaneous 
transport of microbes and nutrient in porous media. The governing equations account for 
the net flux of microbes by convection and dispersion, the decay and growth rates of 
microbes, the chemotaxis/chemotactic and the deposition of microbes on solid matrix. The 
decay of microbes is assumed to be a first-order reaction and the growth of microbes is 
assumed to follow the Monod equation. The existence and uniqueness of solution was 
examined. The coupled non-linear partial differential equations describing the phenomenon 
have been decoupled using parameter-expanding method and solved analytically using 
eigenfunction expansion technique. It is clear from all the results obtained that chemotaxis 
and sedimentation play a significant role in the transport of microbial cells through porous 
media. 
 
Keywords: Microbes, microbial transport, chemotaxis, sedimentation, porous media,  
         analytical solution. 
 
Introduction 
There has been a lot of interest in the study of fate and transport of microbes through 
porous media. The study is of practical nature since viruses and bacteria are responsible for 
some of the deadliest diseases in history, such as AIDS, the plague and flu, and yet bacteria 
perform the most important roles in maintaining life on this planet. Bacteria are the planet’s 
recyclers, plant nurturer and undertakers (Christner, Morris, Foreman, Cai, Sands, 2008). 
 
Corapcioglu and Haridas (1984) developed a model for both virus and bacteria considering 
the environments factors such as rainfall, soil moisture, temperature, oxygen, nutrients, etc. 
They found that these factors affect microbial transport. Ginn et al, (2002) in the review of 
physical, chemical and biological processes governing microbial transport in the saturated 
subsurface introduced novel conceptual models of the interactions between cell surface 
structures and other surfaces.  
 
Tufenkji (2007) reviewed critically traditional approaches used to model microbial transport 
and fate in saturated porous media. Sen, Das, Khilar, and Suraishkumar, (2005) presented a 
comprehensive mathematical model for microbial transport and fate coupling with both 
physicochemical and biological phenomena as well as incorporation of 
chemotaxis/chemotactic in porous media but considered sedimentation of bacteria 
negligible. The numerical solution of the model was obtained using a fully implicit finite 
difference scheme. 
 
Sedimentation is filtration due to gravity (Corapcioglu, & Haridas, 1984; McDowell-Boyer, 
Hunt & Sitar, 1986) and depends on particle buoyancy (Wan, Tokunaga & Tsang, 1995).  
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However, cultured microorganisms are typically larger and sometimes denser than their 
native counterparts (Harvey, 1997) and may involve sizeable buoyancy-driven filtration 
(Ginn, Wood, Nelson, Scheibe, Murphy & Clement, 2002). Thus the need for the present 
paper arises. Here, we incorporated sedimentation and obtained an analytical solution for 
describing the fate and transport of microbes in porous media. We determine the criteria for 
the existence of unique solution.  
 
Model Formulation 
 

 
Flow Diagram (Jiang, 2005) 

 
Following sen et al. (2005), the transport of microbial in porous media is described by the 
following equations: 
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The transport of nutrient is described by the following equation: 
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For a packed column of length L , the initial and boundary conditions can be written as: 
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(4)  

 where bC  is the microbial concentration ( 3/mkg ), e  is the porosity of the medium, cv  is 

the chemotactic velocity of microbes ( sm / ), pv  is the pore water velocity ( sm / ), gv  is the 

sedimentation velocity of microbes ( sm / ), bD  is the dispersion coefficient for microbes 

( sm /2 ), rr  is the rate of release of captured or deposited microbes ( smkg 3/ ), cr  is the rate 

of capture of microbes (freely suspended microbes) ( smkg 3/ ), gfr is the growth rate of 

microbes (freely suspended microbes) ( smkg 3/ ), dfr  is the decay rate of microbes (freely 

suspended microbes) ( smkg 3/ ), s is the volume of captured or deposited microbes per unit 

volume of porous medium ( 33 /mm ), gsr is the growth rate of capture or deposited microbes 

( smkg 3/ ), dsr is the decay rate of capture or deposited microbes ( smkg 3/ ), br is the 

density of microbes ( 3/mkg ), fC is the nutrient (substrate) concentration ( 3/mkg ), fS  is 

the mass of adsorbed nutrient per unit mass of solid matrix ( kgkg / ), fD  is the dispersion 

coefficient for nutrient ( sm /2 ) and sr  is the bulk density of dry solid matrix ( 3/mkg ), s is 

the one-dimensional cell  swimming speed ( sm / ), tR is the number of receptors on the 

microbial cell surface, dk is the dissociation constant for the receptor-attractant complex and 

v  is the differential tumbling frequency which represents the fractional change in cell run 
time per unit temporal change in receptor occupancy, gv is the sedimentation velocity (acting 

vertically downward), sr is the cell density, r is the solution density, g is the gravitational 

acceleration, m is the dynamics viscosity and sd  is the cell diameter (treated as a sphere), 

1k is the release rate coefficient for captured cells ( 1-s ), 2k is the capture rate coefficient for 

free cells and 0s is minimum captured cell concentration, gfk  and gsk are specific growth 

rates for free and captured cells ( 1-s ), respectively, maxgk  
is the maximum specific growth 

rate ( 1-s ) and sk  is Monod constant for the essential nutrient ( 3/ mkg ), dfk  and dsk  are 

specific decay rates for free and captured cells ( 1-s ), Y is the yield coefficient, fk is the 

partition coefficient ( kgm /3 ). 
 
Method of Solution 
Non-dimensionalization: Here, we non-dimensionalize equations (1) – (4), using the 
following dimensionless variables: 
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and obtain 
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together with initial and boundary conditions: 
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Existence and Uniqueness of Solution 
Theorem 1: Let dbllgggaaa =========+= 11212121 ,0,DDD  . Then 
the equations (6) – (8) with initial and boundary conditions (9) has a unique solution for all 

0³t . 
 
Proof: Let dbllgggaaa =========+= 11212121 ,0,DDD  and 

( ) ( ) ( )txtxCtx ,,, fy += , we obtain 
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Using direct integration and eigenfunction expansion method, we obtain the solution of 
problem (10) as 
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 (12) 

where 
( ) ( )ò= dttxCtxk ,,

  

and the solution of problem (11) as 

( ) ( )å
¥

=
÷
ø
ö

ç
è
æ -

+=
1 2

12
sin2,

n
n x

n
tVtx pby   (13) 

where 



164 
 

( ) ( ) ( ) ( )ò ÷
÷
ø

ö
ç
ç
è

æ
-÷

ø
ö

ç
è
æ -

-=
t

nn dFt
n

DtV
0

2

2
12

exp tttp
  

( ) ( ) ( ) ( )1
12

4
2 -

-
+= t

n
tTtF nn d

p
d

 

( ) ( )ò ÷
ø
ö

ç
è
æ -

=
1

0 2
12

sin, xdx
n

txktTn p  

Then, we obtain 

( ) ( ) ( )txx
n

tVtxC
n

n ,
2

12
sin2,

1

fpb -÷÷
ø

ö
çç
è

æ
÷
ø
ö

ç
è
æ -

+= å
¥

=

                                                      (14) 

( ) ( ) ( )txCx
n

tVtx
n

n ,
2

12
sin2,

1

-÷÷
ø

ö
çç
è

æ
÷
ø
ö

ç
è
æ -

+= å
¥

=

pbf                                                     (15) 

Hence, there exists a unique solution of problem (21) – (23). This completes the proof. 
 
Analytical Solution 
We let 21 a+=m  in (6) and solve equations (6) – (9) using parameter-expanding method 
(where details can be found in [5]) and eigenfunctions expansion method (where details can 
be found in [8]).   
We rewrite equations (6) - (8) in the form: 
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where 1=af  
We let 
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Suppose that the solution of equations (16) – (18) can be expressed as: 
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Substituting (19) into (16) – (18) and processing, we obtain 
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solution of equations (20) - (25) as 

( ) ( ) ( )( )å
¥

=
÷
ø
ö

ç
è
æ -

---+=
1

210 2
12

sin11, 11

n

tptpBt x
n

eqeeqtxC p                                              (26) 

( ) ( )BteAtx -= 1,0q                                                                                                   (27) 

( ) 1,0 =txf                                                                                                               (28) 

( )

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

( )( ) ( ) ( )
( )

x
n

teqq

eqeeq
h

eeqeeqeq
n

teqqeqeeqm

temeqeeqeeq

txC
n

n
tp

tptpBtn

tpBttpBttp

n

tptptpBt

n

tptptpBttpBt

p

p
b

b

÷
ø
ö

ç
è
æ -

÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç

è

æ

÷
÷
ø

ö
ç
ç
è

æ

-

+-+--+

----+--
-

++--+-

+------

= å

å

å

å

¥

=

¥

=

-

¥

=

¥

=

-

2
12

sin

1

2
11

1
12

4

1

1

,
1

1 12

76
2

1098

1
12768

1
4543

1

1

11

111

111

1111

   (29) 

( ) ( ) ( ) ( )BtBtBt

n

tpBtBt eememx
n

memememtx --
¥

=

- -+-+÷
ø
ö

ç
è
æ -

+-+= å 76
1

54321 1
2

12
sin, 1 pq     (30) 

( )
( )( ) ( )

( ) ( ) ( )( )å å
¥

=

¥

=

÷
ø
ö

ç
è
æ -

÷
÷
÷

ø

ö

ç
ç
ç

è

æ

-+-+-

--+-+
=

1
1

876

543

1 2
12

sin
1

1
,

2212

22

n
n

tptptptpBt

tpBttp

x
n

epeepeep

eepepp
tx pf                    (31) 

where 



166 
 

( )
( )( )

( )
( )

( )( ) ( )( )

( ) ( ) ( )( )
( )

2

122
8

21

1212
7

2

121
6

2

13
5

2

13
4

2

12
3

2

32
1

13
1

12
1

7
10

1

76
9

1

6
8

1

2
7

1

1
6

1

5
5

1

3
4

1

2
3

8
1

76
1

21
4

2

1

21

1

1
3

2
5

1
21

1

2
3

1

1
2

1
1

2

11111
1

1

,

,,
12

4
,

12

4
,

12

4

,
2

12
,

11
,

11
,

,,,,,,,

,
1

,
2

,,,
2

,,
2

,
1

,
1

,
1

,
12

14

,
12

4
,

2
12

,,,

p

qq
p

pp

qqq
p

pB

qq
p

pBn

q
p

pn

q
p

pn

q
p

n
Dp

b
sA

q
b

r
q

pB

m
q

pB

mm
q

p

m
q

p

q
q

pB

q
q

p

m
q

pB

m
q

pB

m
q

b
p

m
B

m
m

B
m

m
pB

qqq
m

B

qq

pB

qq

B

qq

pB

qq
m

B

qq
m

B

qq
m

b
pA

mq
b
pA

m
D

D
pn

BA
q

pn
A

q
n

DBpBBA

=
-
-

=

-
=

--
=

-
=

-
=

÷÷
ø

ö
çç
è

æ
÷
ø
ö

ç
è
æ -

-=
++

=
++

=
-

=

+
-

===
-

==
+

=
-

=

+
===

+
+

=-
+

+-
+

=

==
+

=+
+

=
+

=
-

+-
=

-
=

÷
÷

ø

ö

ç
ç

è

æ
÷÷
ø

ö
çç
è

æ
÷
ø
ö

ç
è
æ -

-=-=-=
-

=

ppp

p
aa

ap
b

p
bplddb

db
b

 

The computations were done using computer symbolic algebraic package MAPLE. 
 
Results and Discussion 
The systems of partial differential equations describing the physical, chemical and biological 
processes governing the simultaneous transport of microbes and nutrient in the presence of 
filtration due to gravity are solved analytically using parameter-expanding method and 
eigenfunction expansion technique. Analytical solutions of equations (16) - (19) are 
computed for the values of  ,2.0,2.0,3.0,4.0,4.0,1 1212 ====== bbaa DD  

1,1,1,20,1,1,1,5.0,5.0 2111 ========= gggadll ba  
The following figures explain the distribution of volume of captured microbes and microbial 
and nutrient concentration against different dimensionless parameters. 
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From Figure 1, we can conclude that with the increase of Gravity number ( )2a , microbial 
concentration decreases along the temporal and spatial directions.  

 
From Figure 2, we can conclude that with the increase of dispersion coefficient for 
microbes ( )1D , microbial concentration decreases along the temporal and spatial directions.  
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From Figure 3, we can conclude that with the increase of dispersion coefficient for 
microbes ( )1D , the volume of captured microbes increases along the temporal and spatial 
directions.  
 

 
From Figure 4, we can conclude that with the increase of dispersion coefficient for 
nutrient ( )2D , nutrient concentration increases along the temporal and spatial directions.  
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From Figure 5, we can conclude that with the increase of release rate coefficient for 
captured cells ( )b , microbial concentration increases along the temporal and spatial 
directions. 

 
From Figure 6, we can conclude that with the increase of release rate coefficient for 
captured cells ( )b , the volume of captured microbes decreases along the temporal and 
spatial directions.  
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From Figure 7, we can conclude that with the increase of capture rate coefficient for free 
cells ( )l , microbial concentration decreases along the temporal and spatial directions.  

 
From Figure 8, we can conclude that with the increase of capture rate coefficient for free 
cells ( )l , volume of captured microbes increases along the temporal and spatial directions. 
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From Figure 9, we can conclude that with the increase of capture rate coefficient for free 
cells ( )l , nutrient concentration increases along the temporal and spatial directions. 
 
Conclusion 
In this work, we studied the physical, chemical and biological processes governing the 
simultaneous transport of microbes and nutrients in porous media. The model used allows 
some essential insight of how chemotaxis and sedimentation can change the concentration 
of free and captured microbes. Based on our results, we state that: 
(i) Gravity number decreases the microbial concentration. 
(ii) Dispersion coefficient for microbes enhances the volume of captured microbes and 

decreases the microbial concentration. 
(iii) Dispersion coefficient for nutrient enhances the nutrient concentration. 
(iv) Release rate coefficient for captured cells enhances the microbial concentration and 

decreases the volume of captured microbes. 
(v) Capture rate coefficient for free cells decreases the microbial concentration and 

enhances the volume of captured microbes and nutrient concentration. 
 
The main conclusion is that increase in weight or size of free microbes change significantly 
the concentration of free microbes, possibly many of them felled and were trapped in the 
pore matrix due to weight and size. This has negative implication on their survival when 
moving with soil water through the pore. Thus, it is crucial to prevent microbes from adding 
weight or size as it may affect their movement through porous media. 
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