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Abstract 
A mathematical model for the transmission dynamics and control of tuberculosis incorporating 
treatment at both latent and active classes was developed. The disease-free equilibrium state 
was analyzed for stability and the result shows that the state is globally stable when the basic 

reproduction number, 0R is less or equal to unity. Numerical simulation was used to verify the 

analytical result. It shows that the disease can be eradicated in 200 (years) if a high level of 
treatment is applied to both the active class and the latent class of the subpopulation. 
 
Keywords: Tuberculosis, disease-free equilibrium state, basic reproduction number,  
                  stability. 
 
Introduction 
Tuberculosis (TB) remains one of the world’s deadliest communicable disease. In 2013, an 
estimated 9.0 million people developed TB and 1.5 million died from the disease, 360000 of 
whom were HIV positive. TB is slowly declining each year and it is estimated that 37 million 
lives were saved between 2000 and 2013 through effective diagnosis and treatment (WHO, 
2014). An estimated 480000 and 590000 were the cases reported for incidence and prevalence 
of TB in Nigeria for 2014 respectively, while about 91000 died from the disease (WHO, 2015). 
The high incidence of tuberculosis in the developing countries is as a result of poverty and 
underdevelopment, which lead to overcrowding, malnutrition, lack of access to good health care 
services which are contributory factors to the spread of the disease. The nature of population 
distribution is such that many people live in small areas, while others in larger areas have 
sparse concentration of people. This uneven pattern of population distribution, which results 
into massive concentration of people in a limited area, is a major factor which has helped to 
sustain some diseases, especially the airborne diseases of which tuberculosis is one. 
 
In order to find an efficient way to control an infection, it is of great important to establish its 
transmission dynamics. Mathematical modeling and analysis is central to disease epidemiology. 
Numerous mathematical models were developed to study a disease transmission, to evaluate 
the spread of epidemics, and more importantly, to understand the mechanisms of epidemics in 
order to prevent them or minimize the transmission of disease via behavior change, vaccination, 
treatment, quarantine and other measures. During the last three decades Egbetade et al. 
(2012), James et al (2012), Ibrahim et al (2013), okuonghae et al (2013), Bowong (2010) and 
Cagri et al (20013) have designed mathematical models to evaluate the effects of tuberculosis 
in different population settings. Considering the works of the aforementioned authors, a new 
mathematical model is developed incorporating treatment at both latent and active classes of 
the population. 
 
Materials and Methods 
Model Development 
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Dividing the total population into three (3) compartments of Susceptible, Latent and Active 
individuals we assumed that: 

(a) There is homogeneous mixing of the population, where all people are equally likely to be 
infected by the active individuals in case of contact; 

(b) There is constant recruitment rate into the susceptible class; 
(c) New births are not infected at birth, i.e. the transmission is not vertical  

 
The model variables and parameters are defined as follows: 

 S t    Susceptible individuals at time,t  

 L t
    

Latently infected individuals at time,t  

           
 A t

     
Active individuals at time,t  

         
 N t      Total population at time,t  

         Recruitment rate 

         Natural death removal rate (or death due to other causes) 

         Transmission probability per contact 

L       
Treatment rate of latently infected individuals 

A       
Treatment rate of active individuals 

      Progression rate from L class into A class due to lack of treatment or immunity 

      Tuberculosis induced death rate 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: A schematic representation of the model 

 
 
Schematic Diagram of Tuberculosis Transmission Dynamics 
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The susceptible subpopulation  S t  is generated from constant recruitment of individuals at a 

rate . They acquired infection via horizontal transfer from individuals in the active class  A at 

a rate  and thus become latently infected. Individuals in the latent class recovered from the 

disease due to treatment at the rate L and move back to the susceptible class or progresses to 

the active class at the rate . The active individual’s can also recover from the disease due to 

treatment at the rate A and move back to the susceptible class or die due to the disease at the 

rate . Natural death occurs in all classes  

at a rate .  

 
The proposed mathematical model of the dynamics is described by a system of ordinary 
differential equations given below from (3.1a) to (3.1c) 

             
L A

dS
AS L A S

dt
                                                                          

(3.1a)    

             
 L

dL
AS L

dt
      

        
(3.1b)    

           
 I

dA
L A

dt
      

   
(3.1c)    

Where  

            N S L A  
    

(3.2)    

From the model system (3.1), let  

      
 1 LK                                                                (3.3)                                                                                                                                            

.     
 2 AK                    (3.4)        

 

Equations (3.1a) to (3.1c) becomes 

L A

dS
AS L A S

dt
         (3.5a)    

1

dL
AS K L

dt
 

      
(3.5b)    

2

dA
L K A

dt
 

 
(3.5c)    

The total population size  tN  can be determine by analysing (3.5a) to (3.5c) giving 

dN
N A

dt
                                           (3.6) 

The model (3.1) is epidemiologically and mathematically well-posed in the domain, 

3

0,

0,

0,

S
S

L
L R

A
A

S L A N



  
  

  
       

     

                                                 (3.7) 

This domain, , is valid epidemiologically as the sub-populations , , andS L A are all non-

negative and have sums less than or equal the total population, N . 
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Existence of Equilibria, *E  
At equilibrium state the rate of change of each variable is equal to zero. i.e. 

   
0

dS dL dA

dt dt dt
                                                                  (3.8)                 

Let 

S S

L L

A A

N N









  
  
   
  
    

   

                                 (3.9) 

Thus, we have from system (3.5) 
* * * * * 0L II S L I S         (3.10a)    

* * *

1 0A S K L  
      

(3.10b)    

* *

2 0L K A  
 

(3.10c)    

From (3.10c), we have 
*

*

2

L
A

K




 
(3.11)    

Substituting (3.11) into (3.10b), gives 
* *

*

1

2

0
L S

K L
K


   

i.e. 

 * *

1 2 0L S K K    

Thus 
* 0L 

      
(3.12) 

or 

 *

1 2 0S K K  
      

(3.13) 

If (3.12) holds, then substituting it into (3.11) gives 
* 0A 

      
(3.14) 

Substituting (3.12) and (3.14) into system (3.10a) gives 

*S





      
(3.15) 

Thus, the disease-free equilibrium state of the model is given by 

 * * *, , ,0,0S L A


 
  
        

(3.16) 

Similarly, if (3.13) holds, then 

* 1 2K K
S




      
(3.16) 

Substituting (3.11) and (3.16) into system (3.10a) gives 
*

* * 1 2
1

2

0A
L

L K K
K L L

K

  



    
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i.e. 

 

 
1 2 2*

1 2 2L A

K K K
L

K K K

 

   

 


        
(3.17) 

And substituting (3.17) into system (3.11) gives 

 

 
1 2*

1 2 2L A

K K
A

K K K

 

   

 


   
(3.18)    

Thus, an endemic equilibrium state of the model is given by 

 

 
 

 

 

 
1 2 2 1 2* * * 1 2

1 2 2 1 2 2

, , , ,
L A L A

K K K K KK K
S L A

K K K K K K

   

        

    
          

(3.19) 

 

Basic  Reproduction Number,  0R                                                                                                     
 

Using the next generation operator technique described by Diekmann and Heesterbeek (2000) 
and subsequently analysed by Van den Driessche and Watmough (2002), we obtained the basic 

reproduction number, 0R  of the system model which is the spectral radius    of the next 

generation matrix, K . 

i.e. 

KRC  , where 
1 FVK  

Let 

 0 0 0 0, ,E S L A                  (3.20) 

denote the disease-free equilibrium state, then 
00

0 0

S
F

 
  
 

       (3.21) 

and 

1

2

0K
V

K

 
  

 
                  (3.22)  

Thus, 

21

0
KK

R





                      (3.23) 

 

Local Stability Analysis of Disease-free Equilibrium State, 0E  
We used the Jacobian stability approach to prove the local stability of the disease-free 

equilibrium state. Linearization of the system (3.10) at 0E , gives the Jacobian matrix 

 
 0

0 0

1

2

0

0

L AS

J E K S

K

   





   
 
  
 

 
 

           (3.24) 

We now make the following elementary row-transformation: 
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Add
1K


times the second row to the third row.  

 
 0

0 0

1

0

1 2

1

0

0 0

L AS

J E K S

K K S

K

   





 
 
  
 
  
 
  

  
  

     (3.25) 

Thus, the eigenvalues are

 
1 2 10, 0,K         

and 
0

1 2
3

1

K K S

K




 
  

 
 

now, for 3  to be negative, we must have 

0

1 2

1

0
K K S

K

 
  
 

 

i.e 
0

1 2 0K K S    

or 

1
21





KK




 

Thus, 3 0   if 0 1R   implying all the eigenvalues have negative real parts, we therefore, 

established the following result. 
 

Theorem 1: The disease-free equilibrium state, 0E  of the model is locally asymptotically stable 

(LAS) if 0 1R  . 

 

Global stability of disease-free equilibrium point, 0E  
The epidemiological implication of theorem 1 is that tuberculosis can be eliminated (control) 

from the population when 0 1R  , if the initial size of the sub-populations of the model are in 

the basin of attraction of the 0E . 
In order to ensure that tuberculosis is independent of the initial size of the sub-populations of 

the model, it is necessary to show that the 0E  is globally-asymptotically stable (GAS). One 
common approach in studying the global asymptotic stability of the DFE is to construct an 
appropriate Lyapunov function. 
 

Theorem 3: The disease- free equilibrium 
0E of the model is globally asymptotically stable 

(GAS) in  if 0 1R  .   

Proof: Consider the Lyapunov function:  

1f L K A                                                   (2.26)  
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Its derivatives along the solutions of the model equations is 

1f L K A                                           (2.27) 

   1 1 2AS K L K L K A       

1 2AS K K A 

 
1 2

1 2

1
S

AK K
K K

 
  

 
 

Now, since 0S S , we have 

 
0

1 2

1 2

1
S

f K K A
K K

 
   

   
i.e.  

 1 2 0 1f K K A R  

 
When 0 1R  , 0f   ; the equality 0f    holds when 1

0
R and 0.A   Thus 0A   is the 

largest invariant subsets in the set 0f   . Thus, according to the asymptotical stability theorem 

of Lyapunov-LaSalle theorem 0E  is overall globally asymptotically stable in 3

   and hence, the 

result is proved. 
 
Numerical Simulation 
Our numerical results were obtained and confirmed using different levels of treatment. At high 
levels of treatments (fig.1) the disease reduce drastically and vanishes at two hundred (200) 
years from the active class, while in the latent class the population of infective declines 
gradually and vanishes after 300 years. We examine treatment at low levels (fig.2) and the 
result show that the disease cannot be wipe out in the latent class but can be eradicated from 
the active class at about 270 years. Further, the impact of treatment leads to increase in 
population of the susceptibles (fig. 3). 
 
The values of the parameters were obtained using data from Nigeria’s central intelligence 
agency, on the population of Nigeria (177,155,754), life expectancy (52.64 years), birth rate 
38.03/1000 population and natural death 13.16/1000 (CIA, 2014); other parameter values are 
from literature. The model parameters and their values are presented in Table 1 
 
Table 1: Model Parameter and Values 

Parameter Description  Estimated 
value 

Reference 

  Recruitment rate 9000 Estimated 

S(t) Susceptible class 162,000000 Estimated 

L(t) Latently infected 10,000000 Estimated 

A(t)  Actively infected 5000000 Estimate 
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N(t) Total Nigeria population 177000000 CIA 

L  Treatment for latent class 0 < L < 1 Estimate 

A  Treatment for active class 0 < A < 1 Estimate 

  Natural death rate 0.01316 CIA 

  Progression from latent to active class 0.000256 Cagri et al 

  TB induced death rate 0.139 Cagri et al 

  Contact rate 0.0002 Estimate 

 

 
Figure 1: Shows the effect of high level treatment on the active and latent class 
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Figure 2: Shows the effect of low level of treatment on both Active and Latent  
      class 

  TIME (YEAR) 
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Figure 3: Shows the effect of treatment of active and latent class on susceptible  
      class 
 
 
Conclusion 
A mathematical model of the dynamics and control of tuberculosis was developed and analysed 
for stability. The existences of disease-free and endemic equilibria states were obtained. The 

basic reproduction number
0

R  was computed. The analysis revealed that for 1
0
R , the 

disease-free equilibrium is globally asymptotically stable so that the disease always dies out. If

1
0
R  the disease  free equilibrium point is unstable and the endemic equilibrium emerges. 

Thus, 1
0
R  when the effective contact rate    is very small and the treatment rates of latent 

individual  L , and infectious individuals  A  are high. 
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