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Abstract 
In this paper a Mathematical model was proposed for measles disease dynamics. The model is a 
system of first order ordinary differential equations with three compartments: Susceptible S(t); 
Infected I(t) and Recovered R(t). The equilibrium state for both Disease Free and Endemic 
equilibrium are obtained. Conditions for stability of the Disease Free and Endemic equilibrium are 
obtained from characteristics equation and Bellman and Cooke theorem respectively.  The 
hypothetical values were used to analyze the Endemic Equilibrium and the result was presented 
in tabular form. The results from the Disease Free and Endemic Equilibrium state showed that 
once the epidemic breaks out, the population cannot sustain it. 
 
Introduction 
Measles, also known as rubeola or morbilli, is an infection of the respiratory system caused by a 
virus, specifically a paramyxovirus of the genus Morbillivirus. Morbilliviruses, like other 
paramyxoviruses, are enveloped, single-stranded, negative-sense RNA viruses. Humans are the 
natural hosts of the virus; no animal reservoirs are known to exist. This highly contagious virus 
is spread by coughing and sneezing via close personal contact or direct contact with secretions. 
The outbreak and spread of disease have been closely investigated for many years. The ability 
to make predictions about diseases could enable scientists to evaluate inoculation or isolation 
plans and may have a significant effect on the mortality rate of a particular epidemic. The 
modeling of infectious diseases is a tool which has been used to study the mechanisms by which 
diseases spread, to predict the future course of an outbreak and to evaluate strategies for the 
control an epidemic (Daley & Gani, 2005). In 1927, W. O. Kermack and A. G. McKendrick 
created a model in which they considered a fixed population with only three compartments, 
susceptible: S(t), infected, I(t), and recovered, R(t). The compartments used for this model 
consist of three classes: S(t) is used to represent the number of individuals not yet infected with 
the disease at time t, or those susceptible to the disease; I(t) denotes the number of individuals 
who have been infected with the disease and are capable of spreading the disease to those in 
the susceptible category; R(t) is the compartment used for those individuals who have been 
infected and then recovered from the disease. Those in this category are not able to be infected 
again or to transmit the infection to others. As implied by the variable function of t, the model is 
dynamic in that the numbers in each compartment may fluctuate over time. The importance of 
this dynamic aspect is most obvious in an endemic disease with a short infectious period, such 
as measles. Such diseases tend to occur in cycles of outbreaks due to the variation in number of 
susceptibles (S(t)) over time. During an epidemic, the numbers of susceptible individual falls 
rapidly as more of them are infected and thus enter the infectious and recovered compartments. 
The disease cannot break out again until the number of susceptible has built back up as a result 
of babies being born into the susceptible compartment. Each member of the population typically 
progresses from susceptible to infectious to recover. In this paper the birth rate and death rate 
are consider differently. 
 
Model Equations 
The model equations are given as follows: 

S 
dt
dS

mab --= SI       (1.1) 
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( )ISI
dt
dI

mdga ++-=      (1.2)  

RI
dt
dR

mg -=        (1.3) 

The parameters are defined as follows: 
β= Birth rate 
α= contact rate     
µ = Natural death rate  
S = Susceptible     
 γ = Recovery rate 
I = Infected      
δ = Death rate due to disease   
 R = Removed with immunity/ Recovery 
  
Equilibrium State of the Model 

At equilibrium 0===
dt
dR

dt
dI

dt
dS

  

Let yIxS == ,  and zR =  
0=-- xxy mab        (2.1) 

( ) 0=++- yxy mdga      (2.2) 
0=- zy mg        (2.3) 

From (2.3) 

g
mz

y =        (2.4) 

From (2.2) 
 ( )[ ] 0=++- yx mdga      (2.5) 

Either 0=y  or ( ) 0=++- mdgax  
But 0¹y  

( ) 0=++- mdgax  

a
mdg ++

=x        (2.6) 

Substituting (2.4) and (2.6) into (2.1) we obtained, 
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Substituting (2.7) into (2.4) 
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a
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=x  , 
( )
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=y   and 
( )

( )mdgam
mdgmgabg
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++-
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The Disease Free Equilibrium (DFE) 
The equilibrium state in the absence of infection is known as Disease Free Equilibrium or zero 
equilibrium and is such that, y = 0,  
Hence we substitute y = 0 into equations (2.1), (2.2) and (2.3) we obtain 

xmb =  

m
b

=x          (2.10) 

y = 0 and z = 0 
Therefore the Disease Free equilibrium is: 
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ö
çç
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æ
= 0,0,,,

m
b

zyx        (2.11) 

 
The Endemic Equilibrium (EE) State 
The equilibrium state with the presence of infection (i. e. y ≠ 0) is known as endemic equilibrium 
or non- zero equilibrium. 
Therefore, equation (2.9) gives the endemic equilibrium state. That is, 
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Stability of the Equilibrium State 
 
Stability Analysis of the Disease Free Equilibrium (DFE) 

0=-- xxy mab          
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0=- zy mg          

The Jacobian determinant of this system of equations is given by: 
( )

ê
ê
ê

ë

é +-
=

0

y

y

J a
ma

 ( )
g

mdga
a

++-x
x

 

ú
ú
ú

û

ù

- m
0

0

 

The characteristic equation  
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( ) ( )[ ]( )[ ] ( ) 02 =+++-++-++ lmalmlmdgalma xyxy  (3.1) 
But recall from equation (2.11) the DFE is given as: 
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From (3.3) 
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Stability Analysis of the Endemic Equilibrium (EE) 
At non- zero equilibrium we have 
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Expanding (3.1) we have 
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Collect the like terms of l  
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We apply Bellman and Cooke theorem of stability. 
Let (3.5) take the form: 
( ) ( ) ( )[ ] ( )[ ( )( ) ]

( )( ) (3.6)                                                                                                
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Setting λ = iw we have 
( ) ( ) ( )wiGwFiwH +=        (3.7) 

Substituting λ = iw into (3.6) we have 
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Separating the real and imaginary parts of (3.8) we have 
( ) ( )( ) ( ) ( )[ ] (3.9)               3 2 2222 mdgaammammdgma ++---++++-= yxwxyxywF  

  ( ) ( )[ ( )( ) ] (3.10)                             222 223 wyxyyxwwG mmamdgaam -+++-+-+=  
Differentiate (3.9) and (3.10) with respect to w we have 
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Setting 0=w   
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                  (3.13) 
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          (3.16) 
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          (3.17) 
Substituting x and y into (3.15) 
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Substituting x and y into (3.14) 
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Since, ( ) ( ) ( ) ( ) 00000 >¢-¢ GFGF  
We multiply (3.18) by (3.19) we obtain 
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y.instabilit   otherwise  stability     implies  01 >J  
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Table 3.1: Stability Analysis of Endemic Equilibrium (EE) State 
 a   b   d   g  m  J1 REMARK 

0.001 0.2 0.01 0.15 0.015 -0.00031 UNSTABLE 
0.002 0.2 0.01 0.15 0.015 -0.0003 UNSTABLE 
0.003 0.2 0.01 0.15 0.015 -0.0003 UNSTABLE 
0.004 0.2 0.01 0.15 0.015 -0.0003 UNSTABLE 
0.005 0.2 0.01 0.15 0.015 -0.00029 UNSTABLE 
0.006 0.2 0.01 0.15 0.015 -0.00029 UNSTABLE 
0.007 0.2 0.01 0.15 0.015 -0.00029 UNSTABLE 
0.008 0.2 0.01 0.15 0.015 -0.00029 UNSTABLE 
0.009 0.2 0.01 0.15 0.015 -0.00028 UNSTABLE 
0.01 0.2 0.01 0.15 0.015 -0.00028 UNSTABLE 

 
Conclusion 

The Disease Free equilibrium state will be stable if  <
m
ab ( )mdg ++  that is the population is 

sustainable.  

 
We apply Bellman and Cooke theorem to analyze the stability of Endemic Equilibrium (EE) state. 
The hypothetical values were used on equation (3.21) to test for the stability and it shows 
unstable. Therefore, both zero and non-zero equilibrium is unstable. The implication of instability 
is that, the population cannot withstand the epidemics. The limitation of this paper is that, it 
does not include the aged-structured; infants are not separated in any way from the adults. 
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