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Abstract 
In this study, He’s variational Iteration method is presented as an alternative method of solving the 
linear wave equation. Some numerical examples are selected to illustrate the effectiveness and 
accuracy of the method. It is observed that the method is very efficient and rapidly converges as 
exact solutions are obtained after few iterations. 
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Introduction 
The variational iteration method was developed by He (1999, 2000, 2005, 2006a). In recent years a 
great deal of attention has been devoted to the study of the method. The reliability of the method 
and the reduction in the size of the computational domain give this method a wide applicability 
(Gorji-Bandpy et. al. (2007), Ganjavi et. al. (2008) and Onur et. al. (2010)). The present technique 
requires no restrictive assumptions that are used to handle nonlinear terms. The variational iteration 
method does not require specific transformation for terms in the equation as required by other 
techniques (Hussian and Majid (2010)). In this paper, variational iteration method is implemented 
for finding the exact solutions to linear wave equation. 
 
He’s Variational Iteration Method  
To illustrate the basic concept of variational iteration method (VIM), we consider the following 
differential equation. 

       txgtxNutxRutxLu ,,,,        2 .1 

Where L
 

is a linear operator, R  is the remaining linear operator, N a nonlinear operator and 

 txg ,  a inhomogeneous term. By the variational iteration method, we can construct a functional as 

follows:  
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Where  st,  is a general Lagrange multiplier which can be identified optimally via the variational 

theory (He, (2006b)). The function 
n

u~  is a restrictive variation i.e. 0~ 
n

u . Therefore we first 

determine the Lagrange multiplier , that can be identified optimally via integration by parts. The 

successive approximation  txu
n

,
1

; 0n  of the solution  txu ,  will be readily obtained upon 

using the obtained Lagrange multiplier and by using any selective  txu ,
0

. The zeroth 

approximation  txu ,
0

 may be selected by any function that satisfies at least two of the prescribed 

boundary condition (Saeed et. al.(2009)). With  determined, then several approximation  txu
n
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follow immediately. Consequently, the exact solution may be obtained by using 
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Application of Variational Iteration Method  
Considering the linear wave equation 
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Equation (3.1) has a wide range of applications in the fields of science and engineering. By the 
Variational iteration method, a correct functional for eqn. (3.1) can be constructed as follows: 
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Its stationary conditions can be obtained as follows 
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The Lagrange multiplier, therefore can be identified as 

  tsst ,     

    
As a result, the following iteration formula is obtained. 
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Some Numerical Examples 
1.   Consider the homogeneous one dimensional wave equation 
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With conditions   2,0 ttu  ,   20, xxu  and   xxu
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The following iteration formular is obtain 
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The initial approximation is taken as 

  xtxtxu 6, 2

0
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Using equation (3.3) equation (3.5) yields the following 
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2.   Consider inhomogeneous one dimensional wave equation 
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             3.6 

With initial conditions   xxxu sin20,   ,   xxu
t

20,   

The following iteration formular is obtained 
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The initial approximation is taken as 

  xtxxtxu 2sin2,
0

  

Using the above variation iteration formular equation (3.7) yields 
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The result obtained is same as obtained by Yehuda and Jacob (2005) 
 
3.   Consider inhomogeneous one dimensional wave equation 
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eeuu  9                 3.8 

With initial conditions   xxu 0,  ,   xxu
t

sin0,   

The following iteration formular is obtain 
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The initial approximation is taken as 

  xtxtxu sin,
0

  

Using the above variation iteration formular equation (3.9) yields 
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4.   Consider inhomogeneous one dimensional wave equation 
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The following iteration formular is obtain 
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The initial approximation is taken as 

  xtxu ,
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Using the above variation iteration formular equation (3.11) yields 
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5.   Consider inhomogeneous one dimensional wave equation 
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The initial approximation is taken as 
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Using the above variation iteration formular equation (3.13) yields 
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Conclusion 
The variational iteration method is employed in this work to obtain exact solutions to the linear wave 
equation. The variational iteration method reduces the size of calculations and do not require large 
computer memory and discretization of variable t as the exact solutions are obtained by fewer 

iterations. The initial approximations can be arbitrary chosen with unknown constants. It can be 
concluded that the variational iteration method is very powerful tool for solving linear and nonlinear 
initial value problem (IVPs). For computations in this paper, maple package was employed. 
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