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Abstract 
In this paper, we developed a deterministic model for Lassa fever disease in a population with vital 
dynamics, incorporating standard incidence rate, disease induced death and infection due to 
humans, reservoirs and aerosol (airborne) transmissions. We obtained the basic reproduction 
number, 0R  which can be use to control the transmission dynamics of the disease and thus, 
established the conditions for local and global stability of the disease-free equilibrium. 
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Introduction 
Lassa fever is an acute viral illness caused by Lassa virus, named after Lassa town in Nigeria from 
where the first cases originated. Lassa virus is known to be responsible for a severe hemorrhagic 
fever characterized by fever, muscle aches, sore throat, nausea, vomiting, and chest and abdominal 
pain (Centers for Disease Control and Prevention, 2004). The disease is endemic in West Africa and 
has been reported in Sierra Leone, Guinea, Liberia, and Nigeria (Ogbu, Ajuluchukwu & Uneke, 
2007). The number of Lassa fever virus infections per year in West Africa is estimated at about 
300,000 to 500,000 with approximately 5000 deaths (World Health Organization, 2005). The most 
common complication of Lassa fever after recovery is deafness. 
 
The reservoir of the Lassa virus is a small rodent, ‘the multimammate rat’ of the genus Mastomys. 
Since the rodent lives in a semi-domestic fashion near human dwellings, rodent-to-human 
transmission of the virus occurs via direct contact when they are caught and prepared for food. 
Human-to-human transmission may also occur when a person comes into contact with the virus in 
the blood, tissue, secretions, or excretions of an infected person. Furthermore, contact with the 
virus may occur when a person inhales tiny particles in the air contaminated with Lassa virus from 
infected humans or reservoirs urine or feces. This is called aerosol or airborne transmission, and is 
believe to be most significant means of exposure. The virus cannot be spread through casual 
contact (including skin-to-skin contact without exchange of body fluids) (Centers for Disease Control 
and Prevention, 2013). 
  
In order to find an efficient way to control (prevent and treat) an infection, it is of great importance 
to establish its transmission dynamics. One main goal of mathematical epidemiology is to 
understand how to control and eradicate diseases (J. Ma & Z. Ma, 2006). Mathematical models are 
used extensively in the study of ecological and epidemiological phenomena (Kaplan & Brandeau, 
1994). They are particularly helpful as experimental tools with which to evaluate and compare 
control procedures and preventive strategies, and to investigate the relative effects of various 
sociological, biological and environmental factors on the spread of diseases. This is so because they 
can help in figuring out decisions that are of significance importance on the outcomes and provide 
comprehensive examinations that enter into decisions in a way that human reasoning and debate 
cannot. 
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A mathematical model for Lassa fever was developed by (Okuonghae & Okuonghae, 2006) with 
three (3) compartments of Susceptible humans (S), Infected humans (I) and the rodent carrying the 
virus (V). Human-to-human (a ) and rodent-to-human ( b ) infection contact rates were 

incorporated. They obtained the basic reproduction number, 0R and established conditions for local 

stability of both the disease and endemic equilibria. In a similar development [8] developed an SIR 
model for controlling Lassa fever transmission in Northern part of Edo state, Nigeria with l as the 
transmission rate of the disease. In this work, we therefore complement and extend the works of 
the aforementioned authors by having five (5) compartments of Susceptible humans ( HS ), Infected 

humans ( HI ), Infant reservoirs ( RI ), Adult reservoirs ( RA ), and Lassa virus in the environment 

(V ). We also incorporated vital dynamics, standard incidence rate, disease induced death and 
human-to-human ( 1b ), rodent-to-human ( 2b ) and aerosol ( 3b ) infection contact rates. 

 
Model Formulation 
The HS  population are generated from daily recruitment of individuals through birth and recovery 

from infection given by H Hb N  and HIg  respectively. They acquired infection and move to the HI  

compartment via infection from HI , RA  and ,V given by 1 2 3H R

H

I A V
N

b b b+ +
. Natural death 

occurs in HS  and HI classes at a rate Hm . Individuals in the HI  compartment suffer additional 

death due to diseases at the rate Hd . 

 
Similarly, the RI  population are generated from daily recruitment through birth, given by R Rb A . 

They progresses to RA  at the rate s . Natural death and death due to hunting occurs in both RI  

and RA  classes at a rate Rm  and Rd  respectively. 

 
The V compartment is generated from urine and faeces of infected individuals and adult reservoirs 
at the rates He  and Ae  respectively. The virus is reduced from the environment due to natural 

death and other environmental factors.  
 
The corresponding mathematical equations of the above description are given by a system of 
ordinary differential equations below: 

1 2 3H RH
H H H H H H

H

I A VdS
b N S I S

dt N
b b b

g m
æ ö+ +

= - + -ç ÷
è ø

  (1) 

( )1 2 3H RH
H H H

H

I A VdI
I

dt N
b b b

g m d
æ ö+ +

= - + +ç ÷
è ø

   (2) 

( )R
R R R R R

dI
b A I

dt
s m d= - + +      (3) 

( )R
R R R R

dA
I A

dt
s m d= - +                  (4) 

H H R R

dV
e I e A V

dt
f= + -                  (5) 
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where, 
( ) ( ) ( )H H HN t S t I t= +                                                                  (6) 

and  
 

( ) ( ) ( )R R RN t I t A t= +                                                                        (7) 

so that  

( )H
H H H H H

dN
b N I

dt
m d= - -                                                            (8) 

 
and 
 

( )R
R R R R

dN
b N

dt
m d= - -                                                         (9) 

 
in the biological - feasible region: 

( ) 5, , , , :0 ,0 ,0 ,0 ,0 ;

;
H H R R H H R R

H H H R R R

S I I A V S I I A V

S I N I A N
+ì üÎÂ £ £ £ £ £ï ïW = í ý

+ = + =ï ïî þ
 (10) 

 
which can be shown to be positively invariant with respect to the system (1) – (5). 
 
The symbols used in the model are listed below: 

HS       Susceptible humans 

HI        Infected humans 

RI        Infant reservoirs 

RA        Adult reservoirs 

V         Lassa virus in the environment 

HN      Total number of human population 

RN      Total number of reservoirs population 

Hb       Per capital birth rate of humans 

Rb       Per capital birth rate of the reservoirs 

Hm      Per capital natural death rate of humans  

Rm      Per capital natural death rate of reservoirs  

Hd      Lassa fever-induced death rate 

Rd       Mortality rate of reservoirs due to hunting 

1b        Effective contact rate for humans 

 2b      Effective contact rate between reservoirs and human 

3b       Effective contact rate between Lassa virus and human (airborne transmission) 

g         Rate of recovery from HI to HS  

s        Progression rate from toR RI A  
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Ie        Contribution of infected individual’s to Lassa virus in the environment 

Ae        Contribution of adult reservoir to Lassa virus in the environment 

f          Loss rate of Lassa virus in the environment 
 
3.     Model Analysis 
3.1   Existence of disease-free equilibrium state,

 fE  

At the disease-free equilibrium state we have absence of infection. Thus, all the infected classes will 
be zero and the entire population will comprise of only susceptible individuals. 
Theorem 1: A disease-free equilibrium state of the model exists at the point 

( )
*

* * * * *, , , , , 0, 0, 0, 0H H
f H H R R

H

b N
E S I I A V

m
æ ö

= = ç ÷
è ø

 

Proof: At equilibrium state the rate of change of each variable is equal to zero.  i.e. 

             0H H R RdS dI dI dA dV
dt dt dt dt dt

= = = = =                     (11) 

 Let 

 ( ) ( )* * * * *, , , , , , , ,H H R R H H R RS I I A V S I I A V=     (12) 

at equilibrium state. Then from equations (1) - (5), (11) and (12) we have 
* * *

* * * *1 2 3
* 0H R

H H H H H H
H

I A V
b N S I S

N
b b b

g m
æ ö+ +

- + - =ç ÷
è ø

  (13) 

( )
* * *

* *1 2 3
*

0H R
H H H H

H

I A V
S I

N
b b b

g m d
æ ö+ +

- + + =ç ÷
è ø

  (14) 

( )* * 0R R R R Rb A Is m d- + + =                 (15) 

( )* * 0R R R RI As m d- + =                             (16) 
* * * 0I H A Re I e A Vf+ - =                  (17) 

Now, from (15), we have 

( )
*

* R R
R

R R

b A
I

s m d
=

+ +
                             (18) 

Substituting (18) into (16), we have 

( )( )
( )

* 0R R R R R
R

R R

b
A

s m d s m d
s m d

æ ö- + + +
=ç ÷ç ÷+ +è ø

    (19) 

Thus, 
 * 0RA =                                                                                              (20) 

or 

( )( )( ) 0R R R R Rbs m d s m d- + + + =      (21) 

Now, substituting (20) into (16), we obtained 
* 0RI =       (22) 

and then substituting (20) and (22) into (17), we obtained 
* 0V =       (23) 
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Thus, we have 
* * * 0R RI A V= = =       (24) 

Next, we consider equation (13) and (14) - the human sub-populations. Substituting (24) into (13), 
we have 

( )
( )

* * *

*

* *
1

H H H H

H

H H H

b N I N
S

I N

g

b m

+
=

+
      (25) 

Substituting (24) and (25) into (14), we have 

( ) ( )( )
( )

* * * *
1 1*

* *
1

0
H H H H H H H H

H

H H H

b N I I N
I

I N

b g g m d b m

b m

æ ö+ - + + +
ç ÷ =
ç ÷+è ø

 (26) 

Thus,  
* 0HI =                               (27) 

or 

( )( )* *
1 0H H H HS Nb g m d- + + =                            (28) 

Thus, substituting (27) into (25), we obtained 
*

* H H
H

H

b N
S

m
=         (29) 

Hence, a disease-free equilibrium of the model exists at:
 ( )

*
* * * * *, , , , , 0, 0, 0, 0H H

f H H R R
H

b N
E S I I A V

m
æ ö

= = ç ÷
è ø

                           (30) 

 
3.2     Effective basic reproduction number, cR   

One of the most important concerns about any infectious disease is its ability to invade a population. 
The basic reproduction number, 0R  is a measure of the potential for disease spread in a population, 

and is inarguably “one of the foremost and most valuable ideas that mathematical thinking has 
brought to epidemic theory” (Heesterbeek & Dietz, 1996). It represents the average number of 
secondary cases generated by an infected individual if introduced into a susceptible population with 
no immunity to the disease in the absence of interventions to control the infection. If 10 <R , then 

on average, an infected individual produces less than one newly infected individual over the course 
of his infection period. In this case, the infection may die out in the long run. Conversely, if 10 >R , 

each infected individual produces, on average more than one new infection, the infection will be 
able to spread in a population. A large value of 0R  may indicate the possibility of a major epidemic. 

Using the next generation operator technique described by (Diekmann & Heesterbeek, 2000) and 
subsequently analyzed by (Vanden & Watmough, 2005), we obtained the basic reproduction 
number, 0R  of the model equations (1) - (5) which is the spectral radius ( )r  of the next generation 

matrix, K . 
i.e. 

KRC r= , where 1-= FVK  

Now, 
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31 20

0 0 0 0

0 0 0 0

0 0 0 0

HH H

H H H

bb b

F

bb b
m m m

æ ö
ç ÷
ç ÷
ç ÷=
ç ÷
ç ÷
ç ÷
è ø

  and 

1

2

3

0 0 0

0 0

0 0

0

R

I A

K

K b
V

K

e e

s
f

æ ö
ç ÷-ç ÷=
ç ÷-
ç ÷
- -è ø  

where 
 1 H HK g m d= + +                   (31a) 

 2 R RK s m d= + +                   (31b) 

 3 R RK m d= +                    (31c) 

Thus, 

 ( )
3

0 1
IH

H H H

eb
R

b
b

g m d m f
æ ö

= +ç ÷+ + è ø
                        (32) 

3.3     Local stability of disease free equilibrium, fE   

We used the Jacobian stability approach to prove the stability of the disease-free equilibrium state. 
Using the relation 

R R RI N A= -
       

                                                                                  (33) 

allows us as explained in (Hethcote, 2000) and (Benyah, 2013) to attack (1) - (5) by studying the 
subsystem:

 
1 2 3H RH

H H H H H H
H

I A VdS
b N S I S

dt N
b b b

g m
æ ö+ +

= - + -ç ÷
è ø

  (34) 

( )1 2 3H RH
H H H H

H

I A VdI
S I

dt N
b b b

g m d
æ ö+ +

= - + +ç ÷
è ø

   (35) 

( ) ( )R
R R R R R

dA
N A A

dt
s m d= - - +                 (36) 

H R

dV
eI eA V

dt
f= + -                             (37) 

Linearization of the equations (34) - (37) at fE , gives the Jacobian matrix 

( )

( )

31 2

31 2
1

3

0

0 0 0

0

HH H
H

H H H

HH H
f

H H H

I A

bb b

bb bJ E K

K

e e

bb b
m g

m m m

bb b
m m m

s
f

æ öæ ö
- - - - -ç ÷ç ÷

è øç ÷
ç ÷æ öç ÷= - -ç ÷ç ÷è ø
ç ÷

- +ç ÷
ç ÷
è ø

  (38) 

Using elementary row-transformation, we have 
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( )

( )

31 2

31 1 2

3

0

0 0 0

0 0 0

HH H H
H

H H H

HH H H
f

H H H

bb b

bK b bJ E

K

M

bb gm b
m

m m m

bm b b
m m m

s

æ öæ ö-
- - - -ç ÷ç ÷

è øç ÷
ç ÷æ ö-ç ÷= -ç ÷ç ÷è ø
ç ÷

- +ç ÷
ç ÷
è ø

 (39) 

where 
( )

( )
1 1 3

1 1

H H I H

H H

K b e b
M

K b

f m b b
m b

- - +
=

-

 

     (40)  

Thus, the eigenvalues are

 ( )1
1 2 1 3 30, 0, 0H

H
H

b
K K

bl m l l s
m

æ ö
= - < = - - < = - + <ç ÷

è ø
                 

and 
( )

( )
1 1 3

4
1 1

H H I H

H H

K b e b
M

K b

f m b b
l

m b
- - +

= =
-

  

now, for 4l  to be negative, we must have 

( )
( )
1 1 3

1 1

0H H I H

H H

K b e b

K b

f m b b
m b

- - +
<

-
. 

simplifying, we have 

( )
3

1 1IH

H H H

eb b
b

g m d m f
æ ö

+ <ç ÷+ + è ø
. 

Thus, 4 0l <  if 0 1R <  implying all the eigenvalues have negative real parts, we therefore, 

established the following result. 
 
Theorem 2: The disease-free equilibrium fE  of the model is locally asymptotically stable (LAS) if 

0 1R < . 

3.4      Global stability of disease free equilibrium, fE   

The epidemiological implication of the theorem is that Lassa fever can be eliminated (control) from 
the population when 0 1R < , if the initial size of the sub-populations of the model are in the basin of 

attraction of the DFE. 
 
In order to ensure that the disease is independent of the initial size of the sub-populations of the 
model, it is necessary to show that the DFE is globally- asymptotically stable (GAS). One common 
approach in studying the global asymptotic stability of the DFE is to construct an appropriate 
Lyapunov function. 
 
Theorem 3:  The disease- free equilibrium fE of (1) - (5) is globally asymptotically stable (GAS) in 

W  if 0 1R £ .   

Proof: Consider the Lyapunov function:  
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( )H H H HL e I Vg m d= + + +                                                              (41)  

its derivatives along the solutions of the model equations  is 

( )I H H HL e I Vg m d¢¢ ¢= + + +                                            (42) 

( )

( ){ }

1 2 3H R
I H H H H

H

H H I H A R

I A V
e S I

N

e I e A V

b b b
g m d

g m d f

ì üæ ö+ +ï ï= - + +í ýç ÷
ï ïè øî þ

+ + + + -

 

( ) ( )31 2 I HI H H I R H
H H A R H H

H H H

e VSe I S e A S
e A V

N N N
bb b g m d g m d f= + + + + + - + +  

( )

( )
( ) ( )

2

31 1

I R H
H H A R

H

H H H II H

H H H H H

e A S
e A

N

VS ee I
N V

b
g m d

g m d f bb
f g m d g m d f

= + + +

ì ü+ + ï ï+ + -í ý+ + + +ï ïî þ

 

Now, since and I H I H A R
H

e I e I e Ab
S

V Vm f f
+

£ £ , we have 

( ) ( )
3

1 1IH
H H

H H H

eb
L V

b
g m d f b

m g m d f
ì üæ öï ï¢ £ + + + -í ýç ÷+ + è øï ïî þ  

i.e.  

( ) { }0 1H HL V Rg m d f¢ £ + + -  

when 0 1R £ , 0£¢L ; the equality 0=¢L  holds when 10=R and 0.V =  Thus 0V =  is the 

largest invariant subset in the set 0=¢L . Thus, according to the asymptotical stability theorem of 
Lyapunov-LaSalle theorem (see (Miller & Michel, 1982), fE  is overall globally asymptotically stable 

in 5
+Â   and hence, the result is proved. 

 
Conclusion  
In this paper, we developed a new mathematical model which incorporated some important factors 
that plays significant role in the transmission dynamics and control of Lassa fever. These factors are: 
vital dynamics, standard incidence, disease induced death and infection due to humans, reservoirs 
and aerosol (airborne) transmissions. We obtained the basic reproduction numbers, 0R . Our 

analysis reveals that the disease can be control if the basic reproduction number, 0R  is less than 

one regardless of the initial population profile. Thus, every effort must be put in place by all 
concerned to prevent the virus infection by reducing 0R  strictly less than unity. 

 
Finally, there is need for further research work on the effects of various control strategy such as 
vaccination, personal hygiene and hunting on the transmission dynamics of Lassa fever disease. 
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