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Abstract  
This article uses contraction mapping principle in metric space to illustrate the existence and 
uniqueness of solution to second order differential equations. Some examples are considered to 
justify our claim. 
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Introduction 
The study of nonlinear operator was introduced in the early twenties. The Picard’s existence and 
uniqueness of solution to first-order equations [Picard (1893)] with given initial conditions have 
received rigorous attention of researchers. The proof is basically on transforming the differential 
equation and applying fixed point. It can be established by using the Banach fixed point theorem 
[A’lvarez (2011) and Banach (1932)] such that the Picard iteration is convergent with a unique 
limit. In this paper, we consider second order differential equations which is transformed to first-
order vector differential equation and employ the Banach’s theorem to discuss the existence and 
uniqueness of their solutions. See [Ambrosetti & A’lvarez (2011), Kreyszig, Maddox, 
Rhoades(1977)]. 
 
Preliminary Results 
Let us consider the general first order equation: 

 

Where  is defined for  on some continuous sets. Suppose  are 

continuous-valued functions defined for  space. A wide class of (1) is 

the system: 

   

   

   

 

  

This is a system of  ordinary differential equations of the first order, the derivatives 

 appear explicitly and they are analogue of . 

Second Order Equation. An equation of second order 

 
may be treated as a system of the form (2). 

Let y = , =  

Then (3) can be written as: 
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which may be viewed as the type (2). The clear difference between (1) and (2) is that a complex 

number y is now to deal with two such complex numbers . 

Let y be a vector of the two complex numbers and we may write  

y = ( ). The set of all such vectors is called the complex  

2-dimensional space . Systems as Vector Equations. Consider the first order system of 

equations 
 

 

 

It is assumed that   are complex-valued functions defined for  

(t, ) on some set, where t is real and  are complex. 

Clearly,  are functions of t and the vector y, where y = ( ) in . Therefore, we 

may write 

 

                                         

In (5a) and (5b), we have two functions  which may be regarded as a vector-valued 

function f = ( ), which may also be given by 

                                              f (t, y) = ( (t, y), (t, y)) . 

Suppose 

                                               , 

then the system (5a) and (5b) may now be written as 

                                            

Remark. The vector differential equation (6) now has the form (1). 
 

Definition 2.1. A vector-valued function f is said to satisfy a Lipschitz condition on  if there is 

a number K > 0 such that 
                                                         

 

for all y, z   and (t, y), (t, z)  . The least value of constant K is called the Lipschitz 

constant. 
 

Proposition 2.1. Let f be a vector-valued function defined for (t, y) on a set given by 
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If  (k = 1, 2) is continuous on  and there is a constant K > 0 such that  for 

(t, y) , then f satisfies a Lipschitz condition on . 

Proof: See [Coddington(1989)] 
Proposition 2.2. Consider the vector differential equation 
                                           

                                                   

 

where the components  of are of the form 

(t, y) = (t)  + (t)  

(t, y) = (t)  + (t)  

 

where (t), (t), (t), (t) are complex-valued functions defined for real t in 

some interval I. If all the aij are continuous on an interval I : , where a > 0, 

then the corresponding vector-valued function f satisfies a Lipschitz condition on the strip 

                            a, b > 0 

 
Proof: See [Coddington(1989)] 

Proposition 2.3. The vector differential equation (6) defined on   is equivalent to the 

integral equation 

                       y = yo +  

where  and 

 

                      

 
We complete this section with a proposition which is sequel to our work. 
 
Proposition 2.4. Let X be a metric space. Then X is said to be complete if every cauchy 
sequence in X has a limit x which is in X. 
A subset Y of a metric space X is complete if it is closed See [Chidume (1989)]. 
 
 
Problem Formulation 
In this section, we discuss the Banach fixed point theorem which states sufficient conditions for 
the existence and uniqueness of a fixed point and also gives a constructive procedure for 
obtaining sharp results to the fixed point. We start with the following definitions: 
 

Definition  3.1.   Let  be a non-empty set and be a mapping of  into itself. A point 

 is said to be a fixed point of the mapping if     

  ………………………………………..(10) 

i.e.   the image  coincides with      
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Definition  3.2.  Let  be a metric space. A mapping  is called a 

Lipschitz map if there is a real number   such that for all  

…………………………..(11) 

for all  and  is called a contraction on  if there is a positive real number   

such that for all  . 

Remark.  If , then (11) becomes  ) which may not be 

replaced for (11). In this case,  is called nonexpansive (9). 

Proposition 3.3.  Let  be a contraction mapping, then for any positive integer ,  is also 

a contraction mapping. 

Proof 

Let be a contraction mapping   (by Definition  3.2) there exists   for 

 such that  

                              

Now, 

                            

                                                                

                                                               

 

                                                              

                                                             

         

Since  then  for all  Therefore,  is a contraction. 

Remark. If  is a constant of contraction  then  is a constant of  

contraction . 

Proposition 3.4. Every contraction mapping of a metric space  is  

a continuous mapping. 

Proof 
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Let  be a contraction mapping of a metric space  then there is a positive 

constant  such that 

             for all   

Let    be given, we want to find   such that whenever 

            

Choose  . Then, for    

                            

Hence the proof.  See [1] for similar proof. 

Theorem 3.5 (Banach Fixed Point Theorem). Let  be a non empty metric space. Suppose that 

 is complete and  is a contraction on . Then,  has precisely one fixed point 

 

Proof 

Let  be arbitrarily fixed and define the iterative sequence   by 

       ……………….(12) 

We have constructed the sequence of various images of   under  

repeated application of Next, we show that  is Cauchy. 

By (10) and (11), we have  
                                                                              

 

          

                 

 

                    

                                      ………………… (13) 

Let  for  then by geometric progression and proposition  

(3.3),we have   
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) 

            

Since then  for  

So that, 

                ……………….. (14) 

On the right,  and  is fixed. So, as   which make the 

right hand side inequality as small as we please. 

This proves that  is Cauchy. 

Since  is a complete metric space, then  converges to a point,  

say,  in  that is 

 ……...………………………… (15) 

Also, since  is a contraction, (by proposition (3.4))  is continuous. 

Therefore, whenever (15) holds. 

Next is to show that the limit  is the fixed point of the mapping . 

By (10), 

      

 

By (15),  and   , as  

Thus, 

 

And finally, we show that the limit is the only fixed point of . 

Suppose  and  are two fixed points, then  

                                               

                                                   
Thus, 

                            if and only if  

Hence,  is the only fixed point of  

This completes the proof. 

Corollary 3.6. Let  be a complete metric space and  is such that  Suppose  

is a contraction on  , then  has only one fixed point. 

Remark.  Generally in  application, the mapping  is a contraction not on the entire space  

Since a closed subset of a complete space  is complete,  has a fixed point on the closed 
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subset provided there is a restriction on the choice of so that the  lie in the closed 

subset. 
This is justified by the following theorems. 

Theorem 3.7 (Baire Category). Let be a non empty complete metric space. Let  

be sequence of closed sets such that 

                       

Then, there exists an integer  such that  

Proof 

Suppose  no  contains an open ball. Let  be an open ball in , then for any  

there exists such that 

 

Then, the complement  intersects every open ball . 

Observe that  is a non empty open set. 

Let   there exists   such that  

Since no   contains an open ball, then  

Hence,  intersects . Let  since  is an open set, then 

  such that 

 

Since no   contains an open ball, then  

 

Let  since  is an open set, then   such that 

 

Since no   contains an open ball, then , if we continue in this manner , 

we obtain , by induction a sequence  

 

Furthermore,  for each  

Moreover,  is a cauchy sequencein By completeness of . 

  (i.e ) Since  intersects  for each 

. 

Hence, 
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 for each  

This implies 

                                           
This is a contradiction and therefore  

                                          

Remark. Observe that the diameter of  where 

each  is a non empty closed subset of  shrinks to a point , i.e diameter 

   and we have 

          …………………………………………(16) 

In fact, (16) is a singleton set. This is generally reffered to as Principle of  Nested sequences. 
We shall show how this theorem can be adapted to show existence  and uniqueness of solutions 
of vector differential equation (6) 
 
Main   Result 
We begin with the following theorem 

Theorem   4.1. Let  be a continuous vector-valued  function defined on 

 

And bounded on , say 

                

Suppose f satisfies a Lipschitz condition on  with respect to its second argument. Then, the 

iterative function sequence   obtained in (19) converge on the 

interval   where 

…………………………………………(17) 

To a solution  of the system (6) 

 
Proof 

Let  be the metric space of all complex-valued continuous function on the interval 

. For  and  , the 

metric on is defined by  

 

 is complete (7). 

Let  , then  is a closed subspace of  which is also 

complete by proposition 2.5  
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Define the mapping  and  for  

Consider a ball  in  with radius  centred at  given by  

 

We show that  suppose 

 
Where

 

                                 

                                    

                                                                

      

Which implies for , and thus, maps  into  

itself. Next is to show that  is a contradiction on   

By the Lipschitzian assumptions (7) and for . 

We have  

 

 

 

    

                               

From (17), choose  so that  is a contraction on   
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The conclusion of the theorem follows from Theorem 3.5.  

 
Remark 4.1 

Observe that the existence result proved above is local. Moreso, interval  depends on M, K and 

on the initial condition. 
 
Remark 4.2 

Let   be a continuous vector –valued function and global on the strip. 

                   

Then the iterative sequence  exist on   and converge to a 

solution of the system (6). 
We now discuss the existence and uniqueness of solution of a second order differential equation. 
We now consider the following examples: 
 
Example 1: 
Let us consider the problem  

 
Solution 

Let u = , so that 

  ,  

  

 
This can be represented  as the vector differential equation 

 

Where  = . 

Now,               

                                      

                               ,  

So, 

                                                       

Thus,   satisfies a lipschitz conditions with constant  

Also, Let  be a mapping defined by  
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Where  and  

Hence,  is a contraction 

Now, we show that  

Let be fixed. 
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It is easily seen that  exists for all real  and that 

    
 
Example 2 
Let us consider the problem 

 
Solution 

              
Now, 
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And 

 

Observe that   is not Lipchitian at  the origin and hence, the uniqueness of 

the solution is not guaranteed.  
 
Conclusion 

In conclusion, if we suppose  is a continuous vector-valued function defined on 

                           
and satisfies Lipschitz conditions on each strip  

                         

where  a is any positive number. Then, the iterative sequence  

         

converges to a solution which exist for all real . 
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