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Abstract

This article uses contraction mapping principle in metric space to illustrate the existence and
unigueness of solution to second order differential equations. Some examples are considered to
Justify our claim.

Keywords: Picard theorem, Fixed point, Lipschitz map, Nonlinear operator.

Introduction

The study of nonlinear operator was introduced in the early twenties. The Picard’s existence and
uniqueness of solution to first-order equations [Picard (1893)] with given initial conditions have
received rigorous attention of researchers. The proof is basically on transforming the differential
equation and applying fixed point. It can be established by using the Banach fixed point theorem
[Alvarez (2011) and Banach (1932)] such that the Picard iteration is convergent with a unique
limit. In this paper, we consider second order differential equations which is transformed to first-
order vector differential equation and employ the Banach’s theorem to discuss the existence and
uniqueness of their solutions. See [Ambrosetti & A’'lvarez (2011), Kreyszig, Maddox,
Rhoades(1977)].

Preliminary Results
Let us consider the general first order equation:

Wherefis defined for (t,y) on some continuous sets. Suppose fl, fzj - fﬂ are

continuous-valued functions defined for (t, Vir Y2, yﬂ) space. A wide class of (1) is
the system:

y]: — fl(tiylr yEi Tty yﬂ)
yz — fE(tiylr y?i Tty yﬂ)

Vo = Fa(6, Y1, Yo, ) P e s (2)

This is a system of TL ordinary differential equations of the first order, the derivatives

}"{,}’5 ,}"é T oare e }';1 appear explicitly and they are analogue of (1)
Second Order Equation. An equation of second order

may be treated as a system of the form (2).

Lety =Y1,Y = Y3

Then (3) can be written as:
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y]t I P, et s s aes s ans e e s e e (4{1)
V5= (L3, ys) e (4)

which may be viewed as the type (2). The clear difference between (1) and (2) is that a complex
number y is now to deal with two such complex numbers ¥1, ¥=.

Let y be a vector of the two complex numbers and we may write

y = (¥1.,Y2). The set of all such vectors is called the complex

2-dimensional space 2. Systems as Vector Equations. Consider the first order system of
equations

y:[ — fl(t;ylryE) ..............................(5{1)
}'é — fz(t;ylryE) ..............................(Sb)

It is assumed that f 1s f 2 are complex-valued functions defined for
(t, ¥1.,¥2) on some set, where tis real and ¥4, ¥> are complex.

Clearly, f 1s f 5 are functions of t and the vector y, wherey = (¥1,¥2)in C 2, Therefore, we
may write

ilt,y) = fi(t,y1,¥2)
f2(t,y) = 2y, 52)

In (5a) and (5b), we have two functions f 1s f 2 which may be regarded as a vector-valued

function f = (fljr fg), which may also be given by

f(t,y) = (it y), f20t v) .
Suppose

ro__ r Fr
Yy = (3"1:3"2 )r
then the system (5a) and (5b) may now be written as

Remark. The vector differential equation (6) now has the form (1).

Definition 2.1. A vector-valued function f is said to satisfy a Lipschitz condition on () if there is
a number K > 0 such that

F(6,3) = FE2)] S K Ly — 2] o vee oo (7)

forally,z & C? and (t,y), (t, z) € L) .The least value of constant K is called the Lipschitz
constant.

Proposition 2.1. Let Fbe a vector-valued function defined for (t, y) on a set {1 given by

Q:={¢ty):lt-t,|<aly—y,|<b, ab>0}
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af af
If —— (k =1, 2) is continuous on () and there is a constant K > 0'such that ‘—| < K for
dvk dvk

(t, y) € (1, then f satisfies a Lipschitz condition on £1.

Proof: See [Coddington(1989)]
Proposition 2.2. Consider the vector differential equation

y' =f(t.y)

where the components f 1s f 2 of f are of the form

filt, v) = Qi (OY1 + Qua(@)yy oeervereeeees e e e e e (8a)
falty) = Qa1 (Y1 + Aop (@)Y rwrrre e senseneswesee wee e oe (8D)

where (111 (t),""" , d22(1), bl (1), bg (t) are complex-valued functions defined for real £in

some interval I. If all the aij are continuous on an interval I : |t — t0| < L, wherea > 0,
then the corresponding vector-valued function f satisfies a Lipschitz condition on the strip
Qi [t—tl<aly—y,l<bor|yl <o,ab>0

Proof: See [Coddington(1989)]
Proposition 2.3. The vector differential equation (6) defined on 0 is equivalent to the
integral equation

y=yo s Sy FY@DAT e vervve s (9)
where ¥, = (a4, ﬂz);f(’f,}’(’f)) = (f1,f2 ) and

fk(T,}'(T)) = Y1 ax (D y (@) + b (1), K = 1,2

We complete this section with a proposition which is sequel to our work.

Proposition 2.4. Let X be a metric space. Then X is said to be complete if every cauchy
sequence in X has a limit x which is in X.
A subset Y of a metric space X is complete if it is closed See [Chidume (1989)].

Problem Formulation

In this section, we discuss the Banach fixed point theorem which states sufficient conditions for
the existence and uniqueness of a fixed point and also gives a constructive procedure for
obtaining sharp results to the fixed point. We start with the following definitions:

Definition 3.1. Let X be a non-empty set and T be a mapping of X into itself. A point
x € X is said to be a fixed point of the mapping 1 if

i.e. theimage T x coincides with X
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Definition 3.2. Let X = (X, d) be a metric space. A mapping T: X — X is called a
Lipschitz map if there is a real number C = 0 such that for all X,y E X

d(Tx,Ty) < cd(X,¥) e (11)

forall X, ¥ € X and T is called a contraction on X if there is a positive real number € << 1
such that forall X,y € X.

Remark. If € = 1, then (11) becomes d (Tx, Ty) < d (x, V) which may not be

replaced for (11). In this case, T is called nonexpansive (9).

Proposition 3.3. Let T be a contraction mapping, then for any positive integer 11, T™is also
a contraction mapping.

Proof

Let T" be a contraction mapping T-X - X , (by Definition 3.2) there exists C < 1 for
X,y € X such that

d(Tx,Ty) < cd(x,y)

Now,

d(T"x, T"y) = d(T(T™ 'x),T(T"'y))
< cd(T™" 1x, T" 1y)
< c2d(T" ?x,T" ?%y)

— Cﬂd (Tﬂ—ﬂxi Tﬂ—ﬂy)
< c™d(x,y)
= d(T"x,T"y) < c"d(x,y)
Since € << 1, then €™ < 1 for all .. Therefore, T ™" is a contraction.
Remark. If C is a constant of contraction T then €' is a constant of
contraction T ™.

Proposition 3.4. Every contraction mapping of a metric space (X ’ d) is
a continuous mapping.

Proof

71



Journal of Science, Technology, Mathematics and Education (JOSTMED), 10(1), December, 2013

Let T: X — X be a contraction mapping of a metric space X, then there is a positive

constant € << 1 such that
d(Tx,Ty) < cd(x,y) foral x,y € X
Let € == 0 be given, we want to find & = 0 such that whenever
d(x,y) <6 = d(Tx,Ty) <¢

Choose 0 << & < E.Then,forx,}' eEX d(x,y) <6

£
= d(Tx,Ty) <cd(x,y) <c-=c¢
c

Hence the proof. See [1] for similar proof.

Theorem 3.5 (Banach Fixed Point Theorem). Let X be anon empty metric space. Suppose that

X is complete and T: X — X, is a contraction on X. Then, T' has precisely one fixed point
x € X.

Proof
Let Xg € X be arbitrarily fixed and define the iterative sequence {xﬂ} by

X0, X = Txp, X5 =T%Xg, ..., X =T X0 oo (12)

We have constructed the sequence of various images of Xg under

repeated application of T. Next, we show that {xﬂ} is Cauchy.

By (10) and (11), we have

d (xﬂ rxﬂ-l-l) =d (Txﬂ—l: Txﬂ)

< Cd (xﬂ—lr xﬂ)
< Ezd(xﬂ—zrxﬂ—l)

— Eﬂd (xﬂ—ﬂi xﬂ—ﬂ+l)

< c™d(xg, X1) (13)

Let T = M for 1, 1M € N, then by geometric progression and proposition
(3.3),we have

d(xﬂ :xm) < d(xﬂ :xﬂ+l) + d(xﬂ+l :xﬂ+2) + d(xm—l :xm)
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< cd(xy, %) + ™ d(xg, ) + -+ ™ d(xg, xy)
=c"d(xp,x )1+ c+ >+ +c™m

=c" (l_c—m_n) d(xg,x;)

1—¢
SinceC < 1,thenl —c™ " <1form—n=0
So that, n
[N
d(x, , %) < (E)d(xo,xl) .................... (14)

On the right, € < 1 and d(xﬂ, xl) is fixed. So, as 1 — ©2, c™ — 0 which make the
right hand side inequality as small as we please.
This proves that {xﬂ} is Cauchy.

Since X is a complete metric space, then {xﬂ} converges to a point,
say, X in X, that is

Xy = X, A8 TL = 0D i, (15)
Also, since Tisa contraction, (by proposition (3.4)) T is continuous.
Therefore, T X;;, — T X whenever (15) holds.

Next is to show that the limit X is the fixed point of the mapping T .
By (10),
d(Tx,x) < d(x,x,) +d(x,, Tx)

< d(x,x,) + cd(xp_q, %)

By (15), X, <+ Xand X1 —> X ,as M — 00
Thus,
d(Tx,x) =0 Tx =x

And finally, we show that the limit X is the only fixed point of T.
Suppose X and X are two fixed points, then
d(x,x) =d(Tx,Tx)
< cd(x, %)

Thus,
d(x,%) =0, ifandonlyifx = X

Hence, X is the only fixed point of T .
This completes the proof.
Corollary 3.6. Let X be a complete metric space and T is such that T: X — X. Suppose

T ™is a contraction on X , then T ™ has only one fixed point.
Remark. Generally in application, the mapping T is a contraction not on the entire space X.

Since a closed subset of a complete space Xis complete, T has a fixed point on the closed
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subset provided there is a restriction on the choice of X so that the X; lie in the closed

subset.
This is justified by the following theorems.

Theorem 3.7 (Baire Category). Let X beanon empty complete metric space. Let {Fn} ff:l
be sequence of closed sets such that

X = UFﬂ
n=1

Then, there exists an integer Mg such that [ nt(FﬂD) =0

Proof
Suppose no Fy, contains an open ball. Let S be an open ball in X |, then for any Xg € Sp,

there exists Ty < 1 such that

B(x9,19) € S,

Then, the complement Fyx intersects every open ball Sg € X.
Observe that Fy [1 S is a non empty open set.

Let Xy € Ff N Sy, there exists T < :EL such that B(xl, Tl) C Ff N So

Since no F;, contains an open ball, then B’(xl,‘rl) < Fy
Hence, F5 intersects By . Let X5 € F5 N By, since F5 N By is an open set, then

1
1r, < 5 Such that
B, = B(x;,1:) ©F5n B; € B;
Since no Fﬂ contains an open ball, then B’(xz, Tz) @ F3
F{n B, # 0

1

Let X3 € F5 N By, since F5 N B is an open set, then 3 73 < 5 such that
B; = B(x3,13) € F§ N B, C B,
Since no Fy, contains an open ball, then B (X5, 75) & F3, if we continue in this manner,

we obtain , by induction a sequence By, = B (X, 13,)

Bp+1 = B(Xp41,Tn41) C FriiN BB, 1< 2_“

Furthermore, B,,; 1 © B, foreach
Moreover, {x, } o1 is a cauchy sequencein X . By completeness of X .
Xp, = X" € ;-1 By (ex™ € B, for each n)since Fy5 intersects By, for each

n,
Hence,
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x*€F; = x"&F,foreachn

This implies
oo
x* ¢ U F,
n=1

This is a contradiction and therefore
Int(F,,) = 0
Remark. Observe that the diameterof By @ B> 2 B3 2. . .2 B,, D B, 14, where
each Bﬂ is a non empty closed subset of X, shrinks to a point , i.e diameter
(Bﬂ) — 0 asn — o0 and we have

A Ba FD e, (16)

In fact, (16) is a singleton set. This is generally reffered to as Principle of Nested sequences.
We shall show how this theorem can be adapted to show existence and uniqueness of solutions
of vector differential equation (6)

Main Result
We begin with the following theorem

Theorem 4.1. Let f be a continuous vector-valued function defined on
Q:={ty):lt—tyl <aly—yl<b(ab=>0)}
And bounded on {1, say
ft,y)l <M
Suppose fsatisfies a Lipschitz condition on () with respect to its second argument. Then, the

iterative function sequence {(Dm};ﬁzl obtained in (19) converge on the

interval [to — B, to + B] where

To a solution @ of the system (6)

Proof
Let C (1' ) be the metric space of all complex-valued continuous function on the interval

I =1ty —a,tp+al.Fort € [to — a,ty + al and (D(t),qj(t) € C(I), the
metric on C (1) is defined by

d(ot),w() =

C (1') is complete (7).
et ] = [to — B, to + B] € I, then € (J) is a closed subspace of C (I) which is also

complete by proposition 2.5

sup

t €ty —a,ty+ al (1) - ¥(O)
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Define the mapping T: C (J) = C(J) and T®(t) = ®(t) for ® € C(J)
Consider a ball B in C'(J) with radius b centred at ¥ given by

B={®€ C():|0(t) -yl < b}

We show that B 2 T (B), suppose

To®) =30 + | file.0@)dr
Where ’
filr,y(@) = ¥, ap(@yk(@) + bk (1), k=
1,2
= d(T®(t),y,) = sup |[TO(t) — ¥,

f fk(Tr (D(T))dT

= sup

< sup

f £z, ©(0)|dr

< M sup|t — t,]
< MpP < b.
Which implies for @ € T(B) = ® € B, and thus, T maps C () into
itself. Next is to show that 1" is a contradiction on C U)

By the Lipschitzian assumptions (7) and for @ (t),w(t) eC (.
We have

d(T®,TW) = sup|TO(t) — TW(D)]

= sup f fk(T,(D(T))dT — (J’ fk(’{,l-p(“{))d’{)
< sup f Z . (1) (1) — Z @ (DY ()| dt
fo |j=1 j=1

2
t
<sup|[ Y lap(@licon@ ~pulae
to =
< K sup|®(t) — ¥ (1)| suplt — t,|
< Kpd(¢,¥)
From (17), choose C = kﬁ << 1, sothat T is a contraction on C(J)
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The conclusion of the theorem follows from Theorem 3.5.

Remark 4.1
Observe that the existence result proved above is local. Moreso, interval I depends on M, K and
on the initial condition.

Remark 4.2
Let f be a continuous vector —valued function and global on the strip.

0= {(t,y): It —to] < a, |yl < oo}

Then the iterative sequence {@m(t)};ﬁ:l existon |t — to] < @ and converge to a

solution of the system (6).
We now discuss the existence and uniqueness of solution of a second order differential equation.
We now consider the following examples:

Example 1:

Let us consider the problem

d?u

F—F pru=0,ueRu(0)=0u'(0)=1
Solution

Let u =14 , so that

U = Uy,

uy = —p’uy

This can be represented as the vector differential equation
u' = f(t,uusz)

Where f(ti Uy, uz) =(u2,—#2ul)'

Now,
9h _ g %5 _
du, =0, du, =1
9f — _ 2 9f2 =0
duy " ou,
* of 8
" = ,Uz, _f ==
du, du,

Thus, f satisfies a lipschitz conditions with constant L = Ju,2

Also, Let T bea mapping defined by

Tu=ugy + ftf(r,u(f))df

0

d(Tu,Tv) = |Tu(t) — Tv(t)|
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- ftf(f,u(T))dT - ftf(frv(f)) dt

- ft[f(f,u(r)) —f(7,v(7))]dt

(uyp, p2uy) — (Uz,#zvlﬂ dt

t
U, — vy, 0% (v —uy)ldr
to
= [t|(Juy — vo| + 1?1y —uy])
< |t1(1 + p?)|lu— v
= |t|K|u — v]|
Where K = 1 —I-Ju2 =14+ Landc = |t|K < 1

|

Hence, T is a contraction
Now, we show that W,,, — u, m = 1,23, ...
Let u,,, = u™and u® = (0,1) be fixed.

=(0,1) + ftf(s uug)ds
= (0,1)+f (u?, —pul)ds

= (0,1) + ft(U,l)ds

= (0,1) + (t,0) = (t,1)

= (0,1)+f (uz, ,uui)ds
- O+ [ (,-w2)as
o+ (ooa ) (110
= (0,1)+f (uz, pui)ds
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t SE
(1 —u*—, —pzs) ds
0 2

t3 t? t3 t?
=(0,1) + (t —ﬂz—,—ﬂz—) = (t —pi—,1 —,UEE)

=m4)+f

6 2 6

t
u*=1(0,1) +f (u3 — pui)ds
0

::m4)+f

0

t3 t? t?
=00+ |t —pu’—,—u>—+pu*—
()(ﬁ6ﬁ2#24)

t3 t2 t4
p— (t —'#2'——,1 _'Hg'___kﬁi4___)

t SE 53
1—p?>—,—p*s+pu*—|\)ds
( W, —m?s +p 6|)

6 2 24

t
u® =(0,1) +f (usg, —putl)ds
]

::m4)+f

0

2 24’
t3 tE tz

=0+ (t—p* —+u*—,—p*—+put—
0.0) ( e "TH 10 27y

t3 t° t2 t*
— |t _yz2— 4_11_ 2° 4 ot
( et 120 Koy mH 9

It is easily seen that Uy, exists for all real t and that

u,, —» u = (sin ut,cos ut)

Example 2

Let us consider the problem

du 3 0 0) = 0

—+ui=0, u(0)=

dt

Solution
du 3 F(t)

= —=—-ut=f(t,u

dt

Now,
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af 3,
— = — —u 4
du 4
And
‘6 ‘
3
Observe that f (t, u) — —1U#* is not Lipchitian at the origin and hence, the uniqueness of

the solution is not guaranteed.

Conclusion
In conclusion, if we suppose f is a continuous vector-valued function defined on

= {(t,y):1t] < o, |y| < 0}

and satisfies Lipschltz conditions on each strip
(ty):ltl<alyl <=
where (I a is any positive number. Then, the iterative sequence
ac
{Om () =1

converges to a solution which exist for all real L.
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