MULTIVARIATE EXTENSION TO SUDOKU SQUARE DESIGN'S MODELS

SHEHU. A¹. & DANBABA, A².

¹Department of Mathematical Sciences& I.T Federal University,Dutsinma ²Department of Mathematics, Usmanu Danfodiyo University, Sokoto **E-mail:** <u>ashehu@fudutsinma.edu.ng</u> **Phone No:** +234-803-629-8236

Abstract

Sudoku square design consists of treatments that are arranged in a square array such that each row, column or sub-square of the design contains each of the treatments only once. Several univariate analysis of variance models were presented in the literature for the design, but little or no attention is paid on the multivariate or generalized linear model for the design. This paper proposed multivariate extension of the analysis of variance (MANOVA) for the design and its generalized linear model. The significant tests were carried out at 0.05 alpha level of significance and the results show that effects are significant for Hui-Dong and Ru-Gen model and model II.

Introduction

A Sudoku square design is an experimental design with k^2 experimental units that are divided into k rows, k columns, and k boxes (i.e, each box contains k experimental units with 1 through k treatments). In this design each treatment has k replications (Hui-Dong and Ru-Gen, 2008). Detail description on how to design and randomize a Sudoku Square are presented in Hui-Dong and Ru-Gen (2008). However, the Sudoku design presented by Hui-Dong and Ru-Gen (2008) does not contain row-blocks or column-blocks effects. Subramani and Ponnuswamy (2009) extended the design to include row-blocks and column-blocks effects in which they called Sudoku designs-Type I. Methods of constructing the Sudoku design and analysis are discussed by Hui-Dong and Ru-Gen (2008), Subramani and Ponnuswamy (2009), and Danbaba (2016).

The construction of orthogonal Sudoku design has been considered by statisticians and mathematicians. Bailey *et al.* (2008) presented several results for construction of orthogonal Sudoku designs. Subramani (2012) extended the Sudoku designs to Orthogonal (Graeco) Sudoku square designs. A simple method of constructing Graeco Sudoku square designs of odd order is presented by Subramani (2012). Danbaba (2016a) presented a simple row (or column) permutation of matrix for construction of Graeco Sudoku square designs that does not require coding of treatments. Recently, it has been shown that Sudoku design may be partial or incomplete, see Béjar *et al.* (2012) and Mahdian and Mahmoodian (2015).

A partial Sudoku design is a partially filled block matrix, with some empty cells, which also satisfies that each Latin letter appears only once in row (column or sub-block), see Mahdian and Mahmoodian (2015). This partial Sudoku design has been shown to be NP-complete for the particular case of square sub-blocks (k rows and k columns in each sub-block), see Kanaana and Ravikumar (2010). It was reported in Béjar *et al.* (2012) that even when sub-blocks are not square the completion problem is also NP-complete. In general, it is an NP-complete problem to determine if a partial Sudoku square is completable (Colbourn 1984; Mahdian and Mahmoodian 2015).

Donovan *et al.* (2015) and Kumar *et al.* (2015) studied the Sudoku based space filling designs. Recently, Danbaba (2016b) proposed combined analysis of multi-environment experiments conducted via Sudoku square designs of odd order where the treatments are the same to the whole set of experiments. Danbaba (2016a) proposed a simple method of constructing Samurai Sudoku designs and orthogonal (Graeco) Samurai Sudoku design. He

also discussed linear models and methods of data analysis for these designs. The linear models and methods of data analysis for all the Sudoku designs considered so far are on univariate analysis of variance.

This paper proposed a multivariate procedure for the analysis of variance of Sudoku design. Sum of squares for analysis of variance of the design are presented and illustrated with some hypothetical data.

Method

Hui-Dong and Ru-Gen (2008) proposed the following linear model for Sudoku square design as

$$y_{(ij)lm} = \mu + \alpha_i + \beta_j + \gamma_l + \theta_m + \varepsilon_{(ij)lm} \begin{cases} i = 1, 2, ..., k \\ j = 1, 2, ..., k \\ l = 1, 2, ..., k \\ m = 1, 2, ..., k \end{cases}$$
(1)

where $y_{(ij)m}$ is an observed value of the plot in the *l*th row and *m*th column, subjected to the *I*th treatment and *J*th box; μ is the grand mean, $\alpha_i, \beta_i, \gamma_i, \theta_m$ are the main effects of the *I*th treatment, *I*th box, *I*th row and *m*th column, respectively, ε_{iim} is the random error.

The proposed multivariate extension of that model is

$$\mathbf{y}_{(ij)lm} = \mathbf{\mu} + \boldsymbol{\alpha}_i + \boldsymbol{\beta}_j + \boldsymbol{\gamma}_l + \boldsymbol{\theta}_m + \boldsymbol{\varepsilon}_{(ij)lm}$$
(2)

where $Y_{(ij)lm}$ is a p-vector-valued observations and $\varepsilon_{(ij)m} \sim N_p(0,\Sigma)$ The MANOVA Table and hypotheses of interest are as follows:

able 1: MANOVA table for Hui-Dong and Ru-Gen Model							
Source	df	SSP					
		$D_{\alpha} = \sum_{k=1}^{k} \frac{y_{i}y_{i}'}{k} - \frac{y_{}y_{}'}{k^2}$					
Treatments (a)	k-1	$p_{0} = \sum_{k=1}^{k} \frac{y_{j}y_{j}'}{y_{j}y_{j}'} - \frac{y_{}y_{}'}{y_{}y_{}'}$					
Boxes (β)	k-1	$\sum_{i=1}^{2\beta} k k^2$ $\sum_{i=1}^{N} v v' v v'$					
Rows (¥)	k-1	$D_{\gamma} = \sum_{\substack{l=1\\k}} \frac{j \cdot \dots \cdot j \cdot \dots}{k} - \frac{j \cdot \dots \cdot j \cdot \dots}{k^2}$					
Columns (🕫)	k-1	$D_{\theta} = \sum_{\substack{l=1\\k}} \frac{y_{\dots m} y'_{\dots m}}{k} - \frac{y_{\dots} y'_{\dots}}{k^2}$					
Error	(k-1)(k-1)	$D_{\varphi} = \sum_{\substack{i=1\\k}} y_{ijiw} y_{ijiw}^{i} - \frac{y_{i} y_{i}^{i}}{k^{2}}$					
Total	k ² -1	$n_T = \sum_{l=1}^{\infty} y_{ij(kl)} y'_{ij(kl)} - \frac{y_{}y'_{}}{k^2}$					

 H_{α} : all $\boldsymbol{\alpha}_{i}$ are equal

 H_{β} : all $\boldsymbol{\beta}_{i}$ are equal

 H_{γ} : all γ_{i} are equal

 H_{θ} : all θ_{i} are equal

Subramani and Ponnuswamy (2009) constructed and analyzed Sudoku designs of which four types of univariate models were suggested. In this paper the following multivariate alternative models are suggested for analysis of Sudoku designs of odd order:

Type 1

 $\begin{aligned} \mathbf{y}_{ij(k,l,p,q)} &= \boldsymbol{\mu} + \boldsymbol{\alpha}_{i} + \boldsymbol{\beta}_{j} + \boldsymbol{\tau}_{k} + \boldsymbol{C}_{p} + \boldsymbol{\gamma}_{l} + \boldsymbol{s}_{q} + \boldsymbol{\varepsilon}_{i,j(k,l,p,q)} \end{aligned} \tag{3}$ $i, j = 1, 2, ..., m \text{ and } k, l, p, q = 1, 2, ..., m^{2}$ where $\boldsymbol{\mu}$ = General mean $\boldsymbol{a}_{i} = l^{th} \text{ Row block effect}$ $\boldsymbol{\beta}_{j} = f^{th} \text{ Column block effect}$ $\boldsymbol{\tau}_{k} = k^{th} \text{ Treatment effect}$ $\boldsymbol{r}_{l} = l^{th} \text{ Row effect}$ $\boldsymbol{c}_{p} = p^{th} \text{ Column effect}$ $\boldsymbol{s}_{q} = q^{th} \text{ Square effect}$ $\boldsymbol{s}_{i,j(k,l,p,q)} = \text{ is the error component assumed to have vector mean zero and constant}$

covariance Σ

Let $Y_{..j.}$ be the row-box (or row block) total and $Y_{i.j.}$ be the column-box (or column block) totals. The respective sum of squares and product matrices for row-block and column-block are

$$D_{\alpha\theta} = \sum_{i=1}^{k} \frac{y_{i...}y_{i...}'}{m^{2}} - \frac{y_{...}y_{...}'}{m^{2}}$$

$$D_{\beta\theta} = \sum_{i=1}^{k} \frac{y_{j...}y_{j...}'}{m^{2}} - \frac{y_{...}y_{...}'}{m^{3}}$$
(4)

The respective sum of squares and product matrices for rows within row-block and column within column-block are

$$D_{\alpha(\alpha\theta)} = \sum_{i=1}^{k} \frac{y_{t(i)\cdots}y'_{i\cdots}}{m^2} - \sum_{i} \frac{y_{\dots i}y'_{\dots i}}{m^3}$$

$$D_{\beta(\beta\theta)} = \sum_{i=1}^{k} \frac{y_{p(j)\cdots}y'_{j\cdots}}{m^2} - \sum_{j} \frac{y_{\dots j}y'_{\dots j}}{m^3}$$
(5)

The respective sum of squares and product matrices for boxes within row-block and boxes within column-block are

$$D_{\beta(\beta B)} = \sum_{i=1}^{k} \frac{y_{r(j)} \dots y_{r(j)}' \dots}{m^2} - \sum_{m} \frac{y_{mi} y_{mj}'}{m^3}$$

$$D_{\alpha(\alpha \theta)} = \sum_{i=1}^{k} \frac{y_{q(j)} \dots y_{q(j)}' \dots}{m^2} - \sum_{m} \frac{y_{mi} y_{mi}'}{m^3}$$
(6)

Table 2: MANOVA Table of Sudoku design of Type I

Source	df	SSP
Treatments	k — 1	D_{γ}
Row blocks	1	$D_{lpha heta}$
Column block	1	$D_{eta heta}$
Rows	k – 1	D_{lpha}
columns	k — 1	D_{eta}
Boxes	k — 1	$D_{ heta}$
Error	1	
Total	k ² – 1	D_{T}

Type II

 $y_{ij(k,l,p,q)} = \mu + \alpha_i + \beta_j + \tau_k + \gamma(\alpha)_{l(i)} + C(\beta)_{p(j)} + s_q + e_{i,j(k,l,p,q)}$ (7) *i*, *j*, *l*, *p* = 1, 2, ...,*m* and *k*, *q* = 1, 2, ...,*m*²

where μ = General mean $a_i = i^{th}$ block (Row) effect $\beta_j = j^{th}$ block (Column) effect $r_k = k^{th}$ treatment effect $r(a)_{(i)} = l^{th}$ row effect nested in i^{th} block (row) $c(\beta)_{p(j)} = p^{th}$ column effect nested in j^{th} block (column) $s_q = q^{th}$ square effect $\varepsilon_{i,j(k,l,p,q)}$ = the error component assumed to have vector mean zero and constant covariance Σ

Source	df	SSP
Treatments	k – 1	D_{γ}
Row blocks	1	$D_{lpha heta}$
Column block	1	$D_{eta heta}$
Rows within row block	2	$D_{lpha(lpha heta)}$
columns within column block	2	$D_{eta(eta heta)}$
Boxes	k – 1	$D_{ heta}$
Error	2	
Total	k ² – 1	D_T

	Table 3: MANOVA	Table of Sudoku	design of Type I	I
--	------------------------	-----------------	------------------	---

Type IV

$$y_{ij(k,l,p,q,r)} = \mu + \alpha_i + \beta_j + \tau_k + \gamma(\alpha)_{l(i)} + c(\beta)_{p(j)} + s(\alpha)_{q(i)} + \pi(\beta)_{r(j)} + s_{ij(k,l,p,q,r)}$$
(8)

i, *j*, *l*, *p*, *q*, *r* = 1, 2, . . .,*m* and *k* = 1, 2, . . .,*m*² where μ = General mean $a_i = f^h$ Row block effect $\beta_j = f^h$ Column block effect $\tau_k = k^{th}$ Treatment effect $f(a)_{(l)} = f^h$ Row effect nested in f^h row block effect $c(\beta)_{p(l)} = p^{th}$ Column effect nested in f^h column block effect $s(\alpha)_{q(l)} - qth$ Horizontal square effect nested in *ith* Row block effect $\pi(\beta)_{r(j)} = rth$ vertical square effect nested in the *jth* column block effect $F_{ij}(k,l_{ij},q_{ij}) =$ the error component assumed to have vector mean zero and constant

covariance Σ

Table 4. MANOVA table of Sudoku design of Type IV					
df	SSP				
k – 1	D_{γ}				
1	$D_{lpha heta}$				
1	$D_{eta heta}$				
2	$D_{lpha(lpha heta)}$				
2	$D_{eta(eta heta)}$				
2	$D_{ heta(lpha heta)}$				
2	$D_{eta(eta heta)}$				
2					
$k^2 - 1$	D_T				
	$\frac{df}{k-1}$ 1 2 2 2 2 2 k ² - 1				

Table 4: MANOVA table of Sudoku design of Type IV

Muiltivariate Test Statistics used

All the null hypotheses (H_{α} , H_{β} , H_{γ} , H_{θ}) of main-effect are rejected at α level of significance if

(i) Roy Largest Root :
$$\frac{\lambda_a}{\lambda_a+1} > \theta(\min(k-1,p),q,v)$$

(ii) Lawley-Hoteling :
$$\sum_{i=1}^{k} \lambda_i > \theta(\min(k-1, p), q, v)$$

(iii) Wilk's Lambda :
$$\Lambda = \frac{|D|}{|D+D|} < \Lambda(p,k-1,g)$$

(iv) Pillai:
$$\sum_{i=1}^{k} \frac{\lambda_i}{\lambda_i + 1} > \theta(\min(k-1, p), q, v)$$
 (Timm, 1975)

Where

g is the degree of freedom for error

$$q = \frac{1}{2}(|k-1-p|-1) \quad v = \frac{1}{2}(g-p-1)$$

Results

 $y_{(ij)lm}$ is observation ith treatment in the jth box on the lth row in mth column. Fig.1 shows the arrangement of treatments used for the study, it is a Sudoku Square design of order four. While Fig.2 revealed the dependent variable $y_{(ij)lm}$ each of these variables represent more than one responses in each plot i.e (Multivariate case). However, each of the $y_{(ij)lm}$'s in Fig 2 is written in a linear model, which together forms the generalized linear model as seen in equation 10.

	1	2	$\frac{1}{2}$ $\frac{1}{1}$ $\frac{2}{2}$				
1 ∫1	А	В	С	D			
12	D	С	В	A			
2^{1}	В	А	D	С			
² 2	С	D	А	В			

Fig.1: Sudoku Square design of order 4 showing treatment arrangement

	1	2	1	22
1 ¹	<i>Y</i> ₁₁₁₁	<i>Y</i> ₁₂₂₁	<i>Y</i> ₁₃₃₂	y_{1442}
12	y_{2141}	y_{2231}	y_{2322}	y_{2412}
2^{1}	<i>Y</i> ₃₁₂₃	<i>Y</i> ₃₂₁₃	<i>Y</i> ₃₃₄₄	y_{3434}
² 2	<i>Y</i> ₄₁₃₃	<i>Y</i> ₄₂₄₃	<i>Y</i> ₄₃₁₄	<i>Y</i> ₄₄₂₄

Fig. 2: Sudoku square design of order 4 showing dependent variable

																			1 11			
[<i>y</i> ₁₁₁₁]		[1	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0			ε_{1111}	ĺ
<i>Y</i> ₁₂₂₁		1	1	0	0	0	0	1	0	0	0	1	0	0	1	0	0	0	α_1		\mathcal{E}_{1221}	
<i>Y</i> ₁₃₃₂		1	1	0	0	0	0	0	1	0	0	0	1	0	0	1	0	0	$ a_2 $		ε_{1332}	
<i>Y</i> ₁₄₄₂		1	1	0	0	0	0	0	0	1	0	0	0	1	0	1	0	0	α_3		\mathcal{E}_{1442}	
<i>Y</i> ₂₁₄₁		1	0	1	0	0	1	0	0	0	0	0	0	1	1	0	0	0	α_4		ε_{2141}	
<i>y</i> ₂₂₃₁		1	0	1	0	0	0	1	0	0	0	0	1	0	1	0	0	0	ρ_1		ε_{2231}	
<i>Y</i> ₂₃₂₂		1	0	1	0	0	0	0	1	0	0	1	0	0	0	1	0	0	ρ_2		$\varepsilon_{_{2322}}$	
<i>Y</i> ₂₄₁₂		1	0	1	0	0	0	0	0	1	1	0	0	0	0	1	0	0	ρ_3		ε_{2412}	
<i>Y</i> ₃₁₂₃	=	1	0	0	1	0	1	0	0	0	0	1	0	0	0	0	1	0	ρ_4	+	$\varepsilon_{_{3123}}$	
<i>Y</i> ₃₂₁₃		1	0	0	1	0	0	1	0	0	1	0	0	0	0	0	1	0	γ_1		ε_{3213}	
<i>Y</i> ₃₃₄₄		1	0	0	1	0	0	0	1	0	0	0	0	1	0	0	0	1	γ_2		\mathcal{E}_{3344}	
<i>Y</i> ₃₄₃₄		1	0	0	1	0	0	0	0	1	0	0	1	0	0	0	0	1	1/3		\mathcal{E}_{3434}	
<i>Y</i> ₄₁₃₃		1	0	0	0	1	1	0	0	0	0	0	1	0	0	0	1	0	γ_4		\mathcal{E}_{4133}	
<i>Y</i> ₄₂₄₃		1	0	0	0	1	0	1	0	0	0	0	0	1	0	0	1	0	θ_1		\mathcal{E}_{4243}	
<i>Y</i> ₄₃₁₄		1	0	0	0	1	0	0	1	0	1	0	0	0	0	0	0	1	$\left \begin{array}{c} \sigma_2 \\ \rho \end{array} \right $		ε_{4314}	
y4424		1	0	0	0	1	0	0	0	1	0	1	0	0	0	0	0	1	θ_3		\mathcal{E}_{4424}	
																			$\begin{bmatrix} \theta_4 \end{bmatrix}$			

$$\begin{array}{lll} \mathbf{Y}_{16\times l} &=& \mathbf{X}_{16\times l7} & \pmb{\beta}_{17\times l} + \pmb{\epsilon}_{16\times l} \\ \end{array} \\ \mbox{The multivariate extension of this model is proposed as follows:} \end{array}$$

 $\mathbf{Y}_{16\times n} = \mathbf{X}_{16\times 17} \quad \boldsymbol{\beta}_{17\times n} + \boldsymbol{\varepsilon}_{16\times n}$

Illustration

V	v
Υ _i	Y _i

	A(2 1)	B (1 3)	C(3 1)	D(2 5)	(8 10)	
	D(1 3)	C(2 5)	B (5 1)	A(4 1)	(12 10)	(20 20)
	B(2 3)	A(2 4)	D(3 4)	C(2 3)	(9 14)	
	C(3 4)	D(4 3)	A(5 2)	B(1 2)	(13 11)	(22 25)
Y _{.jk.}	(8 11)	(9 15)	(16 8)	(9 11)	(42 45)	
Y. _j	(17	26)	(2	.5 19)		

Fig. 3: Hypothetical data for Sudoku square design of order 4.

Fig 3 is a hypothetical data used for the analysis, procedures for the estimation of various sums of squares and products (SSP) are obtained using the statistics in Table 1 as well as equations 4-6 and the summaries are presented in Tables 5 - 8.

(9)

(10)

The process of obtaining the multivariate significant tests for various effects for the models is that, since the tests described in section 2.1 are functions of eigenvalues λ_i , the values of these eigenvalues are obtained and the calculated values for the multivariate tests are as well obtained using statistics described in section 2.1 and the summaries of the significant tests for the models are also presented in Tables 9-24.

From the data above, we have

Treatment (trt) Total
<u>ABCD.</u>
(13 8) (9 9) (10 13) (10 15)
Box Total B1 B2 B3 B4 .
(6 12) (14 8) (11 14) (11 11)
$cf = \frac{y_{}y'_{}}{k^2}, \ y_{} = \binom{42}{45}$ $\binom{42}{42}(42-45)$
$cf = \frac{\left(45\right)^{\left(42 - 45\right)}}{4 \times 4} = \begin{pmatrix}110.2500 & 118.1250\\118.1250 & 126.5625\end{pmatrix}$
$\sum y_{ijlm}^2 = \binom{2}{1} (2 1) + \ldots + \binom{1}{2} (1 2) = \binom{136 108}{108 155}$
$SSP_{Total} = \begin{pmatrix} 136 & 108\\ 108 & 155 \end{pmatrix} - cf = \begin{pmatrix} 25.750 & -10.1250\\ -10.1250 & 28.4375 \end{pmatrix}$
$SStrt = \frac{\binom{13}{8}(13 8) + \dots + \binom{10}{15}(10 15)}{4} - cf = \begin{pmatrix} 2.250 & -1.8750\\ -1.8750 & 8.1875 \end{pmatrix}$
$SS_{row-block} = \frac{\binom{20}{20}(20 20) + \binom{22}{25}(22 25)}{8} - cf = \begin{pmatrix} 0.250 & 0.6250\\ 0.6250 & 1.5625 \end{pmatrix}$
$SS_{column-block} = \frac{\binom{17}{26}(17 26) + \binom{25}{19}(25 19)}{8} - cf = \binom{4.000 -3.500}{-3.500}$
$SS_{row} = \frac{\binom{8}{10}(8 \ 10) + \dots + \binom{13}{11}(13 \ 11)}{4} - cf = \begin{pmatrix} 4.250 & -0.8750 \\ -0.8750 & 2.6875 \end{pmatrix}$
$SS_{column} = \frac{\binom{8}{11}(8 \ 11) + \dots + \binom{9}{11}(9 \ 11)}{4} - cf = \begin{pmatrix} 10.250 \ -5.6250 \\ -5.6250 \ 6.1875 \end{pmatrix}$
$SS_{boxes} = \frac{\binom{6}{12}(6 \ 12) + \dots + \binom{11}{11}(11 \ 11)}{4} - cf = \binom{8.250 \ -3.3750}{-3.3750 \ 4.6875}$

$$SS_{rowwithrowblack} = \frac{\binom{8}{10}\binom{8}{10} + \dots + \binom{13}{11}\binom{13}{11} + \dots + \binom{20}{20}\binom{20}{20}\binom{20}{20} + \binom{22}{25}\binom{22}{25}\binom{22}{25}}{8}$$

$$= \binom{4.000 - 1.5000}{1.125}$$

$$SS_{columnwithincolumnblock} = \frac{\binom{8}{11}\binom{8}{11} + \dots + \binom{9}{11}\binom{9}{11}}{4} - \frac{\binom{17}{26}\binom{17}{26} + \binom{25}{19}\binom{25}{19}}{8}$$

$$= \binom{6.2500 - 2.125}{3.125}$$

$$SS_{H,boxeswithinrowblock} = \frac{\binom{6}{12}\binom{6}{12} + \dots + \binom{11}{11}\binom{11}{11}}{4} - \frac{\binom{20}{20}\binom{20}{20} + \binom{22}{25}\binom{22}{25}}{8}$$

$$= \binom{8.000 - 4.0000}{3.125}$$

$$SS_{L,boxeswithinrowblock} = \frac{\binom{6}{12}\binom{6}{12} + \dots + \binom{11}{11}\binom{11}{11}}{4} - \frac{\binom{17}{26}\binom{17}{26}\binom{17}{26} + \binom{25}{19}\binom{25}{25}\binom{25}{19}}{8}$$

 $= \begin{pmatrix} 4.2500 & 0.1250 \\ 0.1250 & 1.6250 \end{pmatrix}$

Source	df	SSP
Treatments	3	$\begin{pmatrix} 2.250 & -1.8750 \\ -1.8750 & 8.1875 \end{pmatrix}$
Rows	3	$\begin{pmatrix} 4.250 & -0.8750 \\ -0.8750 & 2.6875 \end{pmatrix}$
columns	3	$\begin{pmatrix} 10.250 & -5.6250 \\ -5.6250 & 6.1875 \end{pmatrix}$
Boxes	3	$\begin{pmatrix} 8.250 & -3.3750 \\ -3.3750 & 4.6875 \end{pmatrix}$
Error	3	$\begin{pmatrix} 0.7500 & 1.6250 \\ 1.6250 & 6.6875 \end{pmatrix}$
Total	15	$\begin{pmatrix} 25.750 & -10.1250 \\ -10.1250 & 28.4375 \end{pmatrix}$

Table 5: MANOVA	Table for	Hui-Dong	and Ru-	Gen Mode
------------------------	------------------	----------	---------	----------

Source	df	SSP
Treatments	3	$\begin{pmatrix} 2.250 & -1.8750 \\ -1.8750 & 8.1875 \end{pmatrix}$
Row blocks	1	$\begin{pmatrix} 0.250 & 0.6250 \\ 0.6250 & 1.5625 \end{pmatrix}$
Column block	1	$\begin{pmatrix} 4.000 & -3.500 \\ -3.500 & 3.0625 \end{pmatrix}$
Rows	3	$\begin{pmatrix} 4.250 & -0.8750 \\ -0.8750 & 2.6875 \end{pmatrix}$
columns	3	$\begin{pmatrix} 10.250 & -5.6250 \\ -5.6250 & 6.1875 \end{pmatrix}$
Boxes	3	$\begin{pmatrix} 8.250 & -3.3750 \\ -3.3750 & 4.6875 \end{pmatrix}$
Error	1	$\begin{pmatrix} -3.5000 & 5.7500 \\ 5.7500 & 2.0625 \\ (25.750) & 10.1250 \end{pmatrix}$
Total	15	$\begin{pmatrix} 25.750 & -10.1250 \\ -10.1250 & 28.4375 \end{pmatrix}$

Table 6: MANOVA Table of Sudoku design of Type I

TABLE 7: MANOVA Table of Sudoku design of Type II

Source	df	SSP
Treatments	3	$\begin{pmatrix} 2.250 & -1.8750 \\ -1.8750 & 8.1875 \end{pmatrix}$
Row blocks	1	$\begin{pmatrix} 0.250 & 0.6250 \\ 0.6250 & 1.5625 \end{pmatrix}$
Column block	1	$\begin{pmatrix} 4.000 & -3.500 \\ -3.500 & 3.0625 \end{pmatrix}$
Rows withn row block	2	$\begin{pmatrix} 4.0000 & -1.5000 \\ -1.5000 & 1.1250 \end{pmatrix}$
columns withincolumnblock	2	$\begin{pmatrix} 0.2500 & -2.1250 \\ -2.1250 & 3.1250 \end{pmatrix}$
Boxes	3	$\begin{pmatrix} 8.250 & -3.3750 \\ -3.3750 & 4.6875 \end{pmatrix}$
Error	3	$\begin{pmatrix} 0.7500 & 1.6250 \\ 1.6250 & 6.6875 \end{pmatrix}$
Total	15	$\begin{pmatrix} 25.750 & -10.1250 \\ -10.1250 & 28.4375 \end{pmatrix}$

Source	đf	SSP							
Treatments	3	$\begin{pmatrix} 2.250 & -1.8750 \\ -1.8750 & 8.1875 \end{pmatrix}$							
Row blocks	1	$\begin{pmatrix} 0.250 & 0.6250 \\ 0.6250 & 1.5625 \end{pmatrix}$							
Column block	1	$\begin{pmatrix} 4.000 & -3.500 \\ -3.500 & 3.0625 \end{pmatrix}$							
Rows within row block	2	$\begin{pmatrix} 4.0000 & -1.5000 \\ -1.5000 & 1.1250 \end{pmatrix}$ $(6.2500 & -2.1250)$							
Columnwithin column block	2	$\begin{pmatrix} 2.1250 & 3.1250 \end{pmatrix}$ (8.0000 -4.0000)							
Boxeswithin row block	2	(-4.0000 3.1250)							
Boxes within column block	2	$\begin{pmatrix} 4.2300 & 0.1250 \\ 0.1250 & 1.6250 \end{pmatrix}$ (-3.250 & 2.1250)							
Error	2	(2.1250 9.7500)							
Total	15	$\begin{pmatrix} 25.750 & -10.1250 \\ -10.1250 & 28.4375 \end{pmatrix}$							

9. MANOVA Table of Sudalus design of Type

Table 9: Wilk's Test for Hui-Dong and Ru-Gen Model

Source	df	λ_1	λ_2	Δ	a=0.05
Treatments	3	10.9116	0.5752	0.0539	0.00953
Row	3	13.6852	0.3279	0.0513	0.00953
Column	3	38.1625	0.3506	0.0189	0.00953
Boxes	3	29.3320	0.6282	0.0202	0.00953
Error	3				
Total	15				

Not Significant at a=0.05, null hypothesis not rejecte

Table 10: Wilk's Test for MANOVA Sudoku design of Type I $\Lambda(p,k-1,g)$ Λ λ_1 h2 Source df Treatments 3 0.6395 -0.5786 0.6099 0.0000 Row block 3.0141 -2.059e-6 0.2491 0.0000 1 Column block -9.379e-1 2.6237e-17 0.9999 0.0000 1 0.0000 Row 3 -0.6444 0.4105 0.700 Column 3 -1.9896 0.3965 0.7161 0.0000 Boxes 3 -1.4467 0.4681 0.6811 0.0000 Error 1 Total 15

Not Significant at a=0.05, null hypothesis not rejected

Source	df	λ1	λ_2	Λ	$\Lambda(p,k-1,g)$
Treatments	3	10.930	0.572	0.0534	0.00953
Row block	1	1.0000	0.2763	0.3918	0.0500
Column block	1	1.7022e+1	2.2855e-16	0.1777	0.0500
Row	2	13.6027	0.0697	0.0640	0.0180
Column	2	21.1972	0.2983	0.03470	0.0180
Boxes	3	28.9348	0.3971	0.0239	0.00953
Error	3				
Total		15			

Table 11: Wilk's test for MANOVA Sudoku design of Type II

Not Significant at a=0.05, null hypothesis not rejected

Table 12: Wilk's Test for MANOVA Sudoku design of Type IV

Source	df	λ_1	λ_2	Δ	$\Lambda(p,k-1,g)$
Treatments	3	-0.6882	0.5977	0.6259	0.00028
Row block	1	1.4631	-5.2583e-18	0.4060	0.00253
Column block	1	-1.2132e+00	9.8933e-19	0.9999	0.00253
Row s within block	2	-1.2073	0.2345	0.8100	0.00064
Columnswithin block	2	-1.8735	0.2245	0.8167	0.00064
Boxes within block	2	-2.4452	0.1017	0.9077	0.00064
Boxes within block	2	-1.1496	0.1656	0.8579	0.00064
Error	2				
Total	15				

Not Significant at a=0.05, null hypothesis not rejected

Table 13: Lawley-Hotelling Test for Hui-Dong and Ru-Gen Model

Source	df	λ_1	λ_2	U°	veus vh	<mark>α</mark> =0.05
Treatments	3	10.9116	0.5752	11.5752	11.4868	58.915
Row	3	13.6852	0.3279	14.0131	14.0131	58.915
Column	3	38.1625	0.3506	38.5131	38.5131	58.915
Boxes	3	29.3320	0.6282	29.9605	29.9605	58.915
Error	3					
Total	15					

Not Significant at a=0.05, null hypothesis not rejected

Table 14: Lawley-Hotelling Test for MANOVA Sudoku design of Type I

Source	df	λ1	λ_2	\boldsymbol{U}^{s}	veus vh	α =0.05	
Treatments	3	0.6395	-0.5786	0.6395	0.2132	0.0000	
Row block	1	3.0141	-2.059e-6	3.0141	1.0047	0.0000	
Columnblock	1	-9.379e-1	2.6237e-17	0.0000	0.0000	0.0000	
Row	3	-0.6444	0.4105	0.4105	0.1368	0.0000	
Column	3	-1.9896	0.3965	0.3965	0.1322	0.0000	
Boxes	3	-1.4467	0.4681	0.4681	0.1560	0.0000	
Error	1						
Total	15						

Not Significant at a=0.05, null hypothesis not rejected

Source	df	λ1	λ_2	U ^s	<u>¹¹ธบ^{ุร} ชุง</u>	α =0.05	
Treatments	3	10.930	0.572	11.4882	11.4882	58.915	
Row block	1	1.0000	0.2763	1.2763	3.8289	58.428	
Column block	1	1.7022e+1	2.2855e-16	17.022	51.0660	58.428	
Row within Boxes	2	13.6027	0.0697	13.6724	20.5086	58.915	
Column within Boxes	2	21.1972	0.2983	21.4955	32.2433	58.915	
Boxes	3	28.9348	0.3971	29.3319	29.3319	58.915	
Error	3						
Total	15						

Table 15: Lawley-Hotelling test for MANOVA Sudoku design of Type II

Not Significant at a=0.05, null hypothesis not rejected

Table 16: Lawley-Hotelling test for MANOVA Sudoku design of Type IV

Source	df		λ	λ_2	U ^s	νευ ^s ν _h	α =0.05	5
Treatments	3		-0.6882	0.5977	0.5977	0.3985	10.659	
Row block	1		1.4631	-5.2583e-1	.8 1.4631	2.9262	0.0000	
Column block	1		-1.2132e+00	9.8933e-1	9 9.8933e-1	.9 0.0000	0.0000	
Row s within block	2		-1.2073	0.2345	0.2345	0.2345	9.8591	
Columnswithin block	2		-1.8735	0.2245	0.2245	0.2245	9.8591	
Boxes within block	2		-2.4452	0.1017	0.1017	0.1017	9.8591	
Boxes within block	2		-1.1496	0.1656	0.1659	0.1659	9.8591	
Error	2							
Total		15						

Not Significant at a=0.05, null hypothesis not rejected

Table 17: Roy's test for Hui-Dong and Ru-Gen Model

Source	df	λ_1	λ_2	θ	$\theta(a, s, q, v)$
Treatments	3	10.9116	0.5752	0.9164	0.5650
Row	3	13.6852	0.3279	0.9319	0.5650
Column	3	38.1625	0.3506	0.9745	0.5650
Boxes	3	29.3320	0.6282	0.9670	0.5650
Error	3				
Total	15				

Significant at a=0.05, null hypothesis is rejected.

Table 18: Roy's test for MANOVA Sudoku design of Type I

Source	df	λ1	λ_2	θ	$\theta(\alpha, s, q, v)$	
Treatments	3	0.6395	-0.5786	0.3901	0.5650	
Row block	1	3.0141	-2.059e-6	0.7509	0.5650	
Columnblock	1	-9.379e-1	2.6237e-17	0.0000	0.5650	
Row	3	-0.6444	0.4105	0.2910	0.5650	
Column	3	-1.9896	0.3965	0.2839	0.5650	
Boxes	3	-1.4467	0.4681	0.3188	0.5650	
Error	1					
Total	15					

Not significant at a=0.05, null hypothesis not rejected

Source	df	λ_1	λ_2	θ	$\theta(\alpha, s, q, v)$
Treatments	3	10.930	0.572	0.9161	0.5650
Row block	1	1.0000	0.2763	0.5000	0.5650
Column block	1	1.7022e+1	2.2855e-16	0.9445	0.5650
Row within Boxes	2	13.6027	0.0697	0.9315	0.5650
Column within Boxes	2	21.1972	0.2983	0.9545	0.5650
Boxes	3	28.9348	0.3971	0.9666	0.5650
Error	3				
Total	15				

Table 19: Roy's test for MANOVA Sudoku design of Type II

Significant at a=0.05, null hypothesis is rejected

Table 20: Roy's test for MANOVA Sudoku design of Type IV

Source	df	λ_1	λ_2	θ	$\theta(\alpha, s, q, v)$
Treatments	3	-0.6882	0.5977	0.3741	0.5650
Row block	1	1.4631	-5.2583e-18	0.5940	0.5650
Column block	1	-1.2132e+00	9.8933e-19	0.0000	0.5650
Row s within block	2	-1.2073	0.2345	0.1899	0.5650
Columnswithin block	2	-1.8735	0.2245	0.817	0.5650
Boxes within block	2	-2.4452	0.1017	0.0923	0.5650
Boxes within block	2	-1.1496	0.1656	0.1421	0.5650
Error	2				
Total	15				

Not Significant at a=0.05, null hypothesis not rejected

Table 21: Pillai test for Hui-Dong and Ru-Gen Model

Source	df	λ_1	λ_2	V^{s}	$\theta(\alpha, s, q, v)$	
Treatments	3	10.9116	0.5752	1.2812	1.536	
Row	3	13.6852	0.3279	1.1788	1.536	
Column	3	38.1625	0.3506	1.2341	1.536	
Boxes	3	29.3320	0.6282	1.3530	1.536	
Error	3					
Total	15					

Not Significant at a=0.05, null hypothesis not rejected

Table 22: Pillai test for MANOVA Sudoku design of Type I

Source	df	λ_1	λ_2	V^{s}	$\theta(\alpha, s, q, v)$	
Treatments	3	0.6395	-0.5786	0.3901	1.536	
Row block	1	3.0141	-2.059e-6	0.7509	1.536	
Columnblock	1	-9.379e-1	2.6237e-17	0.0000	1.536	
Row	3	-0.6444	0.4105	0.2910	1.536	
Column	3	-1.9896	0.3965	0.2839	1.536	
Boxes	3	-1.4467	0.4681	0.3188	1.536	
Error	1					
Total	15					

Not Significant at a=0.05, null hypothesis not rejected

Source	df	λ_1	λ_2	V^{s}	$\theta(\alpha, s, q, v)$
Treatments	3	10.930	0.572	1.2811	1.536
Row block	1	1.0000	0.2763	0.7189	1.536
olumn block	1	1.7022e+1	2.2855e-16	0.8223	1.536
Row within Boxes	2	13.6027	0.0697	0.9967	1.536
Column within Boxes	2	21.1972	0.2983	1.1770	1.536
Boxes	3	28.9348	0.3971	1.2508	1.536
Error	3				
Total	15				

Table 23: Pillai test for MANOVA Sudoku design of Type II

Not Significant at a=0.05, null hypothesis not rejected

Table 24: Pillai test for MANOVA Sudoku design of Type IV

Source	df	λ1	λ_2	V^{s}	$\theta(\alpha, s, q, v)$
Treatments	3	-0.6882	0.5977	0.3741	1.536
Row block	1	1.4631	-5.2583e-18	0.5940	1.536
Column block	1	-1.2132e+00	9.8933e-19	0.0000	1.536
Row s within block	2	-1.2073	0.2345	0.1899	1.536
Columnswithin block	2	-1.8735	0.2245	0.1833	1.536
Boxes within block	2	-2.4452	0.1017	0.0923	1.536
Boxes within block	2	-1.1496	0.1656	0.1420	1.536
Error	2				
Total	15				

Not significant at a=0.05, null hypothesis not rejected

Discussion

This research paper aimed at modifying existing univariate Sudoku square design models to a multivariate case. However, the study proposed procedures of obtaining multivariate analysis of variance for the models and also procedures for calculating the sums of square and products using numerical example. The hypothetical data used for this study, assumed to have multivariate normal with p-vector mean and constant variance-covariance matrix (sigma). The SSP on the MANOVA tables contain matrices of order 2, because sample size of the data used is 2. The main diagonal is the sum of squares while off the diagonal is the sum of products. The results of significant tests show that Wilk's Lambda, Pillai and Lawley-Hotteling, test no significant at a=0.05 for all the effects in all the models proposed. However, Roy,s largest root showed significant effect for all effects in the Hui-Dong and Ru-Gen model and model II of Subramani and Ponnuswamy.

It was observed that three of the univariate Sudoku models suggested by Subramani and Ponnuswamy (2009) were modified in this research, Type III was not modified. The reason is, owing to the fact that the available hypothetical data was insufficient to carry out MANOVA for the model.

Conclusion

This paper modified the existing univariate Sudoku square models suggested by Hui-Dong and Ru-Gen (2008) and Subramani and Ponnuswamy (2009) to cater for more than one dependent variables. It also revealed the procedures for manual computation of sum of squares and products of Sudoku square design when the dependent variables are more than one (multivariate). The generalized linear model for Sudoku square models was proposed and MANOVA tests of significance were carried out using four different tests at a=0.05. This paper recommended that higher order of Sudoku square design should be used to avoid some models failing due to insufficient data, as regarding the case of model III, suggested by Subramani and Ponnuswamy (2009) that failed under Sudoku square of order 4. Further, the use of four multivariate tests to test significance of effects should be encouraged for these proposed multivariate Sudoku models as each of these tests has the same probability of rejecting null hypothesis and however, at times in a given data set conclusions might be differed even when null hypothesis is true.

References

- Danbaba, A. (2016a). Construction and analysis of samurai sudoku. *International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering,* 10(94), 126-131.
- Danbaba, A. (2016b). Combined analysis of sudoku square designs with same treatments world academy of science and technology. *International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering*, 10(40), 155-159.
- Danbaba, A. (2016). Construction and analysis of partially balanced sudoku design of prime order conference proceedings Dubai UAE, April 08-09,2016, 18(4) Part iv. pp 519-520.
- Bailey, R. A., Cameron, P. J., & Connelly, R. (2008). Sudoku, gerchte designs, resolutions, Affine Space, Spreads Reguli and Hamming Codesread. American Math. Monthly.
- Béjar, R., Fernández, C., Mateu, C., Magda, & V. M. (2012). The Sudoku completion problem with rectangular hole pattern is NP-complete. *Discrete Mathematics* 312, 3306–3315.
- Colbourn, C. (1984). The complexity of completing partial latin squares. *Discrete Appl. Math.* 8, 151–158.
- Donovan, D., Haaland, B., & Nott, D. J. (2015). A simple approach to constructing Quasisudoku-based sliced space-filling designs. arxiv.1502.05522v1.
- Hui-Dong, M., & Ru-Gen, X. (2008). Sudoku square: A new design in field experiment. *Acta Agron Sin*, 34(9), 1489–1493.
- Kanaana, I., & Ravikumar, B. (2010). Row-filled completion problem for Sudoku. *Util. Math.*, 81, 65–84.
- Kumar, A., Varghese, C. Varghese, E., & Jaggi, S. (2015). On the construction of designs with three-way blocking. *Model Assisted Statistics and Applications*, 10, 43–52 43.
- Mahdian, M., & Mahmoodian, E. S. (2015). Sudoku rectangle completion, *Electronic Notes in Discrete Mathematics*, 49, 747–755.
- Montgomery, D. C. (2001). Design and analysis of experiments, 5th Ed. New York: Wiley & Sons Inc.

- Subramani, J. (2012). Construction of graeco sudoku square designs of Odd orders. *Bonfring International Journal of Data Mining*, 2(2), 37 – 41.
- Subramani, J., & Ponnuswamy, K. N. (2009). Construction and analysis of Sudoku designs, *Model Assisted Statistics and Applications*, 4(4), 287-301.
- Timm, N. H. (1975). Multivariate analysis with applications in education and psychology. Monterey, California: Brooks/Cole.