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Abstract  
This work examines the properties of solution of two dimensional flow of a viscous 
incompressible electrically conducting fluid past an infinite vertical porous plate in a porous 
medium in the presence of uniform transverse magnetic field and constant heat source. Our 
results revealed that velocityu , mass φ  and temperature θ  are increasing function of time. 
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Introduction 
Convective flows are important in the context of process involving high temperatures. In 
many engineering areas such as nuclear power plants, gas, turbines and various propulsion 
devices for aircraft, missiles and space vehicles. The effect of free convection on accelerated 
flow of a viscous incompressible fluid past an infinite vertical plate with suction has many 
important technological applications in the astrophysical, geophysical and engineering 
problems .The study of the flow of an electrically conducting fluid over porous media has 
been studied due to its numerous applications such applications include MHD pumps, 
induction pumps, MHD generators , oil exploration, nuclear power plants ,gas turbines, air 
crafts and space vehicles among many others. Seigel (1958) first studied transient free 
convection flow past a semi-infinite vertical plate by an integral method. Since then many 
researchers have been published papers on free convection flow past a semi-infinite vertical 
plate.  
 
A few other works of interest in this area include the works of Ogulu and Prakash (2006), 
Kim (2000), Makinde (2005) and Ogulu and Makinde (2009). Anand et al. (2012) used finite 
element method (FEM) to obtain the solution of heat and mass transfer in MHD flow of a 
viscous fluid past a vertical plate under oscillatory suction velocity. Sharma et al. (2012) 
investigated the flow of a viscous incompressible electrically conducting fluid along a porous 
vertical isothermal non-conducting plate with variable suction and internal heat generation in 
the presence of transverse magnetic field. Mohammed et al. (2015) presented an analytical 
method to describe the heat and mass transfer in the flow of an incompressible viscous fluid 
past an infinite vertical plate. With the governing equations accounting for the viscous 
dissipation effect and mass transfer with chemical reaction of constant reaction rate. The 
couple differential equations were transformed using similarity transformation and solved 
analytically using iteration perturbation method. Hamad et al. (2011) investigated the 
unsteady magneto hydrodynamic flow of a Nano fluid past an oscillatory moving vertical 
permeable semi-infinite flat plate with constant heat source in a rotating frame of reference.  
 
The velocity along the plate (slip velocity) is assumed to oscillate on time with a constant 
frequency. Das and Jana (2010) investigated the effect of heat and mass transfer on the 
unsteady free convection flow of a viscous, electrically conducting incompressible fluid near 
an infinite vertical plate embedded in porous medium which moves with time dependent 
velocity under the influence of uniform magnetic field applied normal to the plate. An exact 
solution of the governing partial differential equation is obtained by using Laplace transform 
technique. Maina et al. (2015) studied the effects of heat transfer on unsteady MHD free 
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convective flow past a vertical porous plate in a porous medium with heat source and 
constant injection. Crank-Nicolson method (FDM) was used to solve the governing coupled 
differential equations.  
 
The objectives of this paper are to establish the criteria for the existence of unique solution 
of two dimensional flow of a viscous incompressible electrically conducting fluid past an 
infinite vertical porous plate in a porous medium in the presence of uniform transverse 
magnetic field and constant heat source and examine the properties of the solution under 
certain conditions. 
 
Model Formulation 
Consider the two dimensional flow of a viscous incompressible electrically conducting fluid 
past an infinite vertical porous plate in a porous medium in the presence of uniform 
transverse magnetic field ( )0B and constant heat source ( )Q . The x-axis is measured along 
vertical plate and y-axis normal to it as shown figure 1. The surface of the vertical plate is at 
uniform temperature T and concentration  C. The temperature and concentration far away 
from the plate are T and C∞ ∞  respectively. A magnetic field of strength 0B  acts normal to 
the plate that is, along the y-axis. The analysis of this study is based on following 
assumptions:  
(i)  Physical properties are assumed as constant.  
(ii) Fluid particles are assumed as electrically conducting.  
 
 
The physical sketch and geometry of the problem is shown in figure 1: 
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Figure 1: The flow configuration 

 
Using these assumptions together with usual boundary layer approximations and following 
Maina et al. (2015) and Mohammed et al. (2015) we get the two dimensional equations 
describing the phenomenon as: 
 
Continuity equation  
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(1) Momentum equation 
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Energy equation  

( )∞−+








∂
∂

+
∂
∂

−








∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

TTQ
y

u

x

u

cy

T

x

T

c

k

y

T
v

x

T
u

t

T

pp

2

2

2

2

2 υ
ρ

             (3) 

 
The equation for species concentrations 
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Where ,u v  are the dimensionless velocity components along the x − and y −  

directions respectively, υ is the kinematic viscosity, k thermal conductivity, σ is the 
electrical conductivity, 0B the constant applied magnetic field, ρ  the fluid density, g  

gravity acceleration, 1β  the concentration expansion coefficient, C   and  C
∞ are the 

concentration of solute at the plate and far away from the plate respectively. T is the 
temperature of the fluid on the surface of the plate, T

∞ the temperature of fluid far away 
from the plate, 

p
c  is the specific heat capacity at constant pressure, Q  additional heat 

source, and
m

D  is the molecular diffusivity.   
 
The problem is two-dimensional and since the plate is an infinite, the velocity vector 

(u,0), u u(x, y, t) , (x, y, t)q v v= = =  
 
By symmetry and from continuity equation (1) 

( ) ( ), , ,u u y t T T y t= =  and ( )tyCC ,=  
Then, equations (1) – (4) reduce to 
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Method of Solution 
 
Non-dimensionalisation 
We introduce dimensionless variables for space and time, 
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We also introduce dimensionless variables for velocity, temperature and concentration; 
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Using (9) and (10), and after dropping the prime, the equations (5) -  (8) become 
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Existence and Uniqueness of Solution 
Here, we shall prove the existence and uniqueness of solution of system of equation (11) - 
(13). The question of existence and uniqueness of solution to these equations has been 
addressed by Ayeni (1978), who considered similar set of equations and showed among 
other results that existence and uniqueness are somewhat well known. In his work, he 
studied the following system of parabolic equations 
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S1: 0 ( )f x , 0 ( )g x  and 0 ( )h x  are bounded for nx R∈ . Each has at most a countable number 
of discontinuities. 
S2: f , g , h    satisfies the uniform Lipschitz condition  
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Our proof of existence of unique solution of the system of parabolic equations (11) – (13) 
will be analogous to his proof 
 
Theorem 3.1: There exist a unique solution ( ) ( )y, t , y, t ,u θ and ( )y, tφ  of 
equations (11) – (13) which satisfy (14) 
 
Lemma 3.1 (Ayeni ((978)): 
Let ( )0 0 0, g , hf  and  ( ), ,f g h  satisfy (S1) and (S2) respectively. Then there exist a 
solution of problem (15). 
Proof of Lemma 3.1, see Ayeni (1978) 
 
Proof of theorem 3.1: We rewrite equations (11) – (13) as  
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Ignoring the second term at the right hand side, the fundamental solutions of equations 
(11) – (13) are (see Toki and Tokis (2007)) 
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and 

( ), , , , 0h y t u θ φ =    are Lipschitz continuous. Hence by theorem 3.1, the results follows. This 
completes the proof. 
 
Properties of Solution 
 
Theorem 3.2: Let Pr 1Sc M Kp Gr Ec qφ= = = = = = =  in equation (11)-(13). Then, 
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In the proof, we shall make use of the following Lemma of Kolodner and Pederson (1966). 
Lemma (Kolodner and Pederson (1966)): Let 
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Clearly,  k  and   1k  are bounded from below and  2k  is bounded everywhere. Hence, by 
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Where 
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Hence, by Kolodner and Perdeson’s lemma ( ), 0y tθ ≥ . This completes the proof. 
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Conclusion 
To examine the properties of solution of the two dimensional flow of a viscous 
incompressible electrically conducting fluid through a porous medium in an infinite vertical 
porous plate in the presence of uniform transverse magnetic field ( )0B and constant heat 

source ( )Q , we used an approach by Ayeni (1978) and Kolodner and Pederson (1966). Our 

results revealed that velocity u , mass φ  and temperature θ  are increasing function of 
time. We can therefore conclude that for cooling of the plate by free convection current 
( )0Grφ > , velocity, mass and temperature are increasing function of time. 
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