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Abstract 
Bayesian statistics and in particular Bayes Factors have been proposed as an alternative to 
improve the scientific decision making when testing a hypothesis; this became necessary after 
the null hypothesis significant test based on p-values were criticized by researchers in various 
fields. A lot of Bayesian procedures have been proposed overtime but its wide spread adoption is 
scant. This article examined a prior sensitive Bayes Factors proposed by (Wang and Sun 2013) 
as well as a Bayesian Information Criterion-based Bayes factor proposed by (Faulkenberry 2018) 
on their decisions for testing the null hypothesis for One Way ANOVA with random effects. We 
illustrated the two procedures using simulated studies under two cases: Case 1: factor unit is 
fixed while observation per unit is increasing (i.e. random). Case 2: observation per unit is fixed 
while number of factor unit is increasing (i.e. random). The study revealed that in all the two 
cases, the two Bayes factors were consistent in increasing the weight of evidence in support of 
the null hypothesis of zero between factor variability; but as the sample sizes became large, the 
prior sensitive Bayes factor become impracticable. This impracticality situation was as a result of 
the Gamma function involved in its computational formular. 

 
Keywords: Bayesian, Bayes Factor, Random effects, P-value, Analysis of Variance 

 
Introduction 
Assessing variability according to distinct factors in data is a fundamental technique of statistics, 
(Steven & Reinhard, 2013). Most researchers using Analysis of Variance (ANOVA) procedures 
choose a fixed-effects model, even though they may not realize that they are making this choice 
or realize its consequences. However, a random or mixed effects model may be a more 
appropriate fit for many research designs. The choice has implications for the generalizability of 
the findings, for the type of statistical questions that can be asked, for the fit between data and 
the model, and for the conceptual match between the model and the theory. From a Bayesian 
perspective, random factors are introduced to increase generalizability and accuracy. From a 
frequentist’ point of view, random factors allow for more tightfisted models with fewer 
parameters. Without a good knowledge of the statistical foundations, it may be hard to 
determine which factors are best treated as random (Jansen, 2011). 
 
If a fixed way is misclassified as random, it will be subject to an overly conservative test of 
statistical significance and therefore the likelihood of making a Type II error (not rejecting a false 
null hypothesis) will increase (Wike & Church, 1976). Inversely, if a random way is misclassified 
as fixed, there is a greater chance of making a Type I error (falsely rejecting a true null 
hypothesis), (Clark, 1973). In addition, if a random way is classified as fixed, the results of the 
study cannot be generalized beyond the levels that are utilized in the study, (Clark, 1973).  To 
resolve the issues of concern above, (Gelman, 2005) suggested that all factors in the model 
should be treated as random.  
 
Owing to its importance and simplicity, ANOVA is taught in virtually every applied statistics 
course. Nevertheless, the Bayesian hypothesis testing literature on ANOVA is scant.  A Bayesian 
approach to test the hypothesis is to use Bayes factors comparing the hypothesis/models with 
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and without the random effects in question; Bayes factors have been advocated as superior to p-
values for assessing statistical evidence in data. Despite the advantages of Bayes factors and the 
drawbacks of p-values, inference by p-values is still nearly ubiquitous. One impediment to 
adoption of Bayes factors is a lack of practical development, particularly a lack of ready-to-use 
formulas and algorithms. 
 
Bayesian methods have become increasingly popular in almost all scientific disciplines, (Poirier, 
2006). One important reason for this gain in popularity is the ease with which Bayesian methods 
can be applied to relatively complex problems involving, for instance, hierarchical modeling or 
the comparison between non nested models. However, Bayesian methods can also be applied in 
simpler statistical scenarios such as those that feature basic testing procedures. Prominent 
examples of such procedures include ANOVA and the Student t-test; these tests are the 
cornerstone of data analysis in fields such as biology, economics, sociology, and psychology, 
(Wetzel, Grasman & Wagenmakers, 2012). 
 
Numerical values of population characteristics are typically expressed in terms of a parameter 
and numerical descriptions of the subset that make up a dataset. Before a dataset is obtained, 
the numerical values of both the population characteristics and the dataset are uncertain. After a 
dataset is obtained, the information it contains can be used to decrease our uncertainty about 
the population characteristics. Quantifying this change in uncertainty is the purpose of Bayesian 
inference. See Nathoo and Masson (2016).  In Bayesian estimation, uncertainty about 
parameters is quantified by probability distributions.  

 
Methodology 
 
Bayes rule 

Suppose, we have a model 𝜇 and we wish to estimate the model parameters (θ). Then, we 
have to define a prior distribution over these parameters; 𝑝(𝜃|𝜇). When data Y comes in, 

this prior distribution 𝑝(𝜃|𝜇) is updated to yield the posterior distribution 𝑝(𝜃|𝑌, 𝜇). 
According to Bayes’ rule, 
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It is important to note that Bayes’ rule does not tell us what our beliefs should be; it tells us 
how they should change after seeing new information, (Wetzel, Grasman and Wagenmakers 
2012). 

 
Bayes factor 
Consider the balanced one-way analysis-of-variance (ANOVA) random effects model, 

ijiijy                       ki ,...,2,1   and  mj ,...,2,1                             (2.3) 

In such a balanced variance components model (2.2), we are often interested in evaluating 
whether the random effects should be included, which is equivalent to testing the null 
hypothesis: 

0:0 iM     against    0:1 iM                                                                (2.4) 
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Kass and Raftery (1995) defined the Bayes factor as “a summary of the evidence provided 
by the data in favor of one scientific theory, represented by a statistical model, as opposed 
to another.” Simply stated, the Bayes factor is a number, a ratio of one model’s odds to the 
odds of another model.  

 
The Bayes factor for comparing 𝑀1to 𝑀0given by (2.3) can be written as: 

)(

)(

0

1
10

Ym

Ym
BF                                                                                          (2.5) 

where, 

)/()( 11 mYpYm                                                                                                              

 
and  

)/()( 00 mYpYm                                                                                                               

 
Hypothesis Testing 
The decisions about the null hypothesis for conducting One Way ANOVA with random effects 
test was examined using two (2) Bayes factor namely: 
(i)   Prior Sensitive Bayes factor (Wang & Sun 2013). 
(ii) BIC-based Bayes factor (Faulkenberry 2018). 
 
The behaviours of the Bayes factors were examined using simulation studies under two 
cases, namely: Case 1 and Case 2.  
 
CASE 1: Factor/treatment unit (k) is fixed while observations per units (m) are increasing. 
 
CASE 2: Number of observations per units (m) is fixed while factor/treatment units (k) are 
increasing. All the methodologies are discussed below. 
 
Simulation Study: 
Data sets were simulated using the native functions implemented in the R software for 
statistical computing (version 3.4.0 for Windows, R Core Team, 2017)from a standard 
normal population𝑁(𝜇 =  0, 𝜎 =  1). Simulation was generated using random seed sets to 

simplify replication. 
 
Bayes Factor for One Way Random Effect Model 
(Proposed by Wang and Sun (2013) 
Consider the balanced one-way analysis-of-variance (ANOVA) random effects model, 

ijiijy               ki ,...,2,1  and mj ,...,2,1                                        (2.6) 

 
Where, 𝑦𝑖𝑗 is the jth observation associated with the unit i and μ represents the unknown 

intercept. Here 𝑘 (≥ 2) is the number of factor/treatment units and  𝑚 (≥ 2) is the number 

of observations per unit. It is assumed that the random effect (𝛼𝑖) and the error term 

(𝜀𝑖𝑗  ) are mutually independent, and that 𝛼𝑖 ~ 𝑁(0, 𝜎𝛼
2) and 𝜀𝑖𝑗  ~ 𝑁(0,  𝜎2) for all i and j, 

The unknown parameters (𝜎𝛼
2 𝑎𝑛𝑑 𝜎2) are called variance components. 

 
The Wang and Sun (2013) Bayes factor for obtaining the weight of evidence in support of 
the null hypothesis is given by 
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iij yySSE  is the sum of square error                                             (2.8) 
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ij yySST    is the sum of square total                                          (2.9) 

 
Wang and Sun (2013) has established through simulation studies that the Bayes factor 

equation (2.7) is robust to a choice of 𝛼 ∈ [− 
1

2
, 0]. 

The Bayes factor above has an explicit closed form expression without integral 
representation. This can be easily calculated using statistical packages, (Wang and Sun 
2013). Based on work by (Raftery 1995) and (Wagenmakers 2007), (Faulkenberry 2018) 
demonstrated a method for estimating Bayes factors using the BIC. The (Faulkenberry 
2018) BIC-based Bayes factor for obtaining the weight of evidence in support of the null 
hypothesis is given by 
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where  
n is the total sample size, 𝐹 is the F-statistic obtained from the ANOVA table, 𝑑𝑓1 is the first 

degrees of freedom (k-1) and 𝑑𝑓2 is the second degrees of freedom (mk-k). 

 

Note that since 𝐵𝐹10 =
1

𝐵𝐹01
, the formula can be used flexibly to assess evidence for either 

the null hypothesis or the alternative hypothesis, depending on the researcher’s needs. 
Conclusion on the Bayes factor values is drawn from table provided by Raftery (1995). 
 

Table 1: Decision Rule Table For Bayes Factor Interpretation 

Bayes Factor (𝑩𝑭𝟎𝟏) Evidence For the null hypothesis (𝑯𝟎) 
1 − 3 Not worth more a mere mention 

3 –  10 Substantial 
10 − 100 Strong 
>   100 Decisive  

Source: Raftery (1995) 
 

The study will be carried out in the following steps: 
Steps: 
(i)  Each case (1 and 2) will be studied under five (5) sub-cases namely (A, B, C, D and 

E) corresponding to the different number of factors (k)/observations (m). 
(ii) For each sub-case (A, B, C, D and E), data will be simulated for the set k and m 

combination. 
(iii) The frequentist One Way ANOVA table summary will be computed using the 

simulated data for each sub-case. 
(iv) The Wang and Sun (2013) Prior Sensitive Bayes factor will be computed using  

results in (iii) above.  
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(v) Faulkenberry (2018) BIC-based Bayes factor will be computed will be computed  
         using results in (iii) above. 
 

These five steps will be replicated for all the sub-cases under the case 1 and case 2. 
 

Results and Discussion 
 
CASE 1: Factor/Treatment Unit (K) Is Fixed While Number of Observations Per 
Units (M) Is Increasing 
The factors/treatments are fixed at (𝒌 = 𝟓) units. (i.e the factors will be Factor A, B, C, D 

and E), whereas the observations per units (m) will be increasing. Five (5) different sample 

sizes per unit were simulated (𝒎 =  𝟓, 𝟏𝟎, 𝟐𝟎, 𝟓𝟎 𝒂𝒏𝒅 𝟏𝟎𝟎). Simulations were generated 
using random seeds to simplify replication. The methodologies discussed above are 
illustrated below using Case 1A (𝑘 = 5 𝑎𝑛𝑑 𝑚 = 5). 
 

CASE 1A (𝒌 = 𝟓 𝒂𝒏𝒅 𝒎 = 𝟓): 

 Table 1: Simulated data for CASE 1A (𝒌 = 𝟓 𝒂𝒏𝒅 𝒎 = 𝟓) 

F
a

c
to

rs
/
T

re
a

t

m
e

n
t 

U
n

it
s
 (

k
)  Observations per factor (m) 

 
A -0.90 0.18 1.59 -1.13 -0.08 
B 0.13 0.71 -0.24 1.98 -0.14 

C 0.42 0.98 -0.39 -1.04 1.78 
D -2.31 0.88 0.04 1.01 0.43 
E 2.09 -1.20 1.59 1.95 0.00 

𝑆𝑆𝑇  =   ∑ ∑(𝑦𝑖𝑗 − �̅�.  .)
2

5

𝑗=1

5

𝑖=1

=  31.3915                                                                                        

𝑆𝑆𝐵 =  𝑚 ∑(�̅�𝑖. − �̅�.  .)
2

5

𝑖=1

  = 2.9763                                               𝑀𝑆𝐵 =
𝑆𝑆𝐵

𝑘 − 1
= 0.7441 

𝑆𝑆𝐸 =  𝑆𝑆𝑇 −   𝑆𝑆𝐵  =  28.4152                                            𝑀𝑆𝐸 =
𝑆𝑆𝐸

𝑚(𝑘 − 1)
= 1.4208 

For the frequentist ANOVA, we seek to test the hypothesis, 

10210 ...:  H against
jiH  :1
for ji                                             (3.1) 

 
Table 2: Summary of One Way ANOVA table for Case 1A (𝒌 = 𝟓 𝒂𝒏𝒅 𝒎 = 𝟓) 

Source of 
Variation 

Degree of 
Freedom 
(df) 

Sum of 
Squares (SS) 

Mean 
Squares (MS) 

F-
Ratio 

p-value 
(p) 

Between 
Groups 

4 2.9763 0.7441 

0.5237 0.7194 Within Groups 
(Error) 

20 28.4152 1.4208 

Total 24 31.3915  
 

Frequentist’ Decision rule: Reject 𝐻0if𝑃𝑣𝑎𝑙𝑢𝑒 < 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 𝑙𝑒𝑣𝑒𝑙 (𝛼 = 0.05) 
Frequentist’ Conclusion: Since Pvalue = 0.7194 > the significance level (α) = 0.05  and F- 
ratio = 0.5237 > the significance level (α) = 0.05  we do not reject the null hypothesis 
stated in equation (2.4). This implies that the five treatment means are the same. 
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Wang and Sun (2013) Bayes Factors for Case 1 A (k = 5 and m = 5): 
We seek to test the hypothesis, 

0: 2

0 H  against 0: 2

1 H                                                                       (3.2) 

 
The Wang and Sun (2013) Bayes factor for obtaining the weight of evidence in support of 

the null hypothesis for (𝒌 = 𝟓 𝒂𝒏𝒅 𝒎 = 𝟓) is computed as follows: 

𝐵𝐹01 =
⎾ (

𝑚𝑘 − 1
2 ) ⎾(𝛼 + 1)

⎾ (
𝑘
2

+ 𝛼 +
1
2

) ⎾ (
𝑚𝑘 − 𝑘

2
)

(
𝑆𝑆𝐸

𝑆𝑆𝑇
)

(𝑚𝑘−𝑘−2)
2+𝛼

 

=
⎾ (

25 − 1
2

) ⎾ (−
1
2

+ 1)

⎾ (
5
2

+ (−
1
2

) +
1
2

) ⎾ (
25 − 5

2
)

(
28.4152

31.3915
)

(25−5−2)

2+(−
1
2

)
= 34.04   

 
The Bayes factor 𝐵𝐹01 = 34.04, signifies that the data has a strong evidence in support of 

the null hypothesis of no variability between the five factors/treatments stated in equation 

(3.2). This can be seen in Table 3. Its inverse 𝐵𝐹10 =  
1

34.04
= 0.029 indicates negligible 

evidence that the data could occur under the alternative hypothesis where α = -0.5.  
 
Table 3: Decision Rule Table For Bayes Factor Interpretation 

Bayes Factor (𝑩𝑭𝟎𝟏) Evidence For the null hypothesis (𝑯𝟎) 
1 − 3 Not worth more a mere mention 

3 –  10 Substantial 
10 − 100 Strong 
>   100 Decisive  

 
Faulkenberry (2018) BIC-based Bayes Factor for Case 1A 
(𝒌 = 𝟓 𝒂𝒏𝒅 𝒎 = 𝟓):  

We seek to test the hypothesis, 

0: 2

0 H  against 0: 2

1 H                    (3.3) 

 
The Faulkenberry (2018) BIC-based Bayes factor for obtaining the weight of evidence in 

support of the null hypothesis for (𝒌 = 𝟓 𝒂𝒏𝒅 𝒎 = 𝟓) is computed as follows: 

             𝐵𝐹01 = √𝑛𝑑𝑓1 (
𝐹𝑑𝑓1

𝑑𝑓2
+ 1)

− 𝑛
 

Where, n is the total sample size (𝑚𝑘) =  25. Hence, 

                𝐵𝐹01 = √254 (
0.5237×4

20
+ 1)

− 25
 

                           = 179.94 

The Bayes factors of 𝐵𝐹01 = 179.94 indicates a decisive evidence in support of the null 
hypothesis of no variability between the five factors/treatments stated in equation (3.3). 

This can be seen in Table 3. Although, it’s inverse 𝐵𝐹10 =
1

179.94
= 0.006 indicates negligible 

evidence that the data will occur under the alternative hypothesis. This is also more 
informative than the frequentist conclusion would have offered because it provides 
information about the null and the alternative hypothesis. 
 
Summary of Discussion for Case 1:  
The methodologies illustrated in case 1A above were replicated for the four (4) other sub- 
cases under case 1 i.e   

 𝒌 = 𝟓 𝒂𝒏𝒅 𝒎 = 𝟏𝟎, 𝒌 = 𝟓 𝒂𝒏𝒅 𝒎 = 𝟐𝟎, 𝒌 = 𝟓 𝒂𝒏𝒅 𝒎 = 𝟓𝟎, 𝒌 = 𝟓 𝒂𝒏𝒅 𝒎 = 𝟏𝟎𝟎 
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The results are summarized in Table 4:  
 
Table 4: Summary of the Bayes factors computations for Wang and Sun (2013)  

     and Faulkenberry (2018) under Case 1 
  𝑪𝒂𝒔𝒆 𝟏 ( 𝒌 𝒊𝒔 𝒇𝒊𝒙𝒆𝒅 𝒂𝒕 𝟓 𝒘𝒉𝒊𝒍𝒆 𝒎 𝒊𝒔 𝒊𝒏𝒄𝒓𝒆𝒂𝒔𝒊𝒏𝒈) 

 Formular m=5 m=10 m=20 m=50 m=100 

Wang and Sun 

(2013) 
 (BF) 

𝐵𝐹01 = 

⎾ (
𝑚𝑘 − 1

2
) ⎾(𝛼 + 1)

⎾ (
𝑘
2

+ 𝛼 +
1
2

) ⎾ (
𝑚𝑘 − 𝑘

2
)

(
𝑆𝑆𝐸

𝑆𝑆𝑇
)

(𝑚𝑘−𝑘−2)
2+𝛼

 
34.04 241.74 781.26 

1334.2
1 

Out of 
range 

Faulkenberry (2018) 

BIC-based BF 𝐵𝐹01 = √𝑛𝑑𝑓1 (
𝐹𝑑𝑓1

𝑑𝑓2

+ 1)
− 𝑛

 
179.9
4 

982.97 
3315.1
5 

7687.0
4 

708.78 

Source: Result of simulation 
 

As the number of observations per unit (m) grew from 5 through 100, the BIC-based Bayes 
factor (Faulkenberry, 2018) and the prior sensitive Bayes factor (Wang and Sun, 2013) 
indicated a steady rise in the weight of evidence in support of the null hypothesis of no 
between group variability. At no point did this two Bayes factors provided substantial 
evidence against the null hypothesis of no variability between the five factors/treatments. 

The BIC-based Bayes factor dropped suddenly at 𝑚 =  100 whereas the Wang and Sun 

(2013) Bayes factor was not available at that point. From Table 4, at 𝑚 =  100 the Wang 
and Sun (2013) Bayes factor reported an “Out of Range of the Gamma function”.  

 
CASE 2: Observation Per Units (m) Is Fixed While Factor/ Treatment Units (k) 
Are Increasing   
The observations per treatment units are fixed at (𝒎 = 𝟏𝟎) units, whereas the number 

offactor/treatment units (k) will be increasing. Five (5) different factor sizes (𝒌 =  𝟓, 𝟏𝟎 ,
𝟐𝟎, 𝟑𝟎 𝒂𝒏𝒅 𝟑𝟓) were considered. Simulations were generated using random seeds to 

simplify replication. The methodologies discussed above are illustrated below using Case 2A 
corresponding to (𝑘 = 5 𝑎𝑛𝑑 𝑚 = 10). 

 

CASE 2A (𝒌 = 𝟓 𝒂𝒏𝒅 𝒎 = 𝟏𝟎): 
 

Table 5: Simulated data for CASE 2A (𝒌 = 𝟓 𝒂𝒏𝒅 𝒎 = 𝟏𝟎) 

F
a

c
to

rs
/
T

re
a

tm
e

n

t 
U

n
it

s
 (

k
) 

 Observations per factor (m) 

A 
-0.9 0.18 1.59 -1.13 -0.08 0.13 0.71 

-
0.24 

1.98 -0.14 

B 0.42 0.98 -0.39 -1.04 1.78 -2.31 0.88 0.04 1.01 0.43 
C 2.09 -1.2 1.59 1.95 0 -2.45 0.48 -0.6 0.79 0.29 
D 

0.74 0.32 1.08 -0.28 -0.78 -0.6 
-
1.73 

-0.9 -0.56 -0.25 

E -
0.38 

-
1.96 

-0.84 1.9 0.62 1.99 
-
0.31 

-
0.09 

-0.18 -1.2 

 Source: Simulation Result 
 

𝑆𝑆𝑇  =   ∑ ∑(𝑦𝑖𝑗 − �̅�.  .)
2

10

𝑗=1

5

𝑖=1

=  62.4978                                                                                        

𝑆𝑆𝐵 =  𝑚 ∑(�̅�𝑖. − �̅�.  .)
2

5

𝑖=1

  = 2.2905                                               𝑀𝑆𝐵 =
𝑆𝑆𝐵

𝑘 − 1
= 0.5726 
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𝑆𝑆𝐸 =  𝑆𝑆𝑇 −   𝑆𝑆𝐵  =  60.2073                                            𝑀𝑆𝐸 =
𝑆𝑆𝐸

𝑚(𝑘 − 1)
= 1.3379 

For the frequentist ANOVA, we seek to test the hypothesis, 

5210 ...:  H against
jiH  :1
   for ji                                            (3.4)                                   

 

Table 6: Summary of One Way ANOVA table for CASE 2A 𝒌 = 𝟓 𝒂𝒏𝒅 𝒎 = 𝟏𝟎 

Source of 
Variation 

Degree of 
Freedom 
(DF) 

Sum of 
Squares (SS) 

Mean 
Squares (MS) 

F-
Ratio 

p-value 
(p) 

Between Groups 4 2.2905 0.5726 

0.4280 0.7876 
Within Groups 
(Error) 

        45 60.2073 1.3379 

Total 49 62.4978  
 

Frequentist’ Decision rule: Reject 𝐻0if𝑃𝑣𝑎𝑙𝑢𝑒 < 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 𝑙𝑒𝑣𝑒𝑙 (𝛼 = 0.05) 
 

Frequentist’ Conclusion:  
Since 𝑃𝑣𝑎𝑙𝑢𝑒 =  0.7876 > the significance level (α) = 0.05, we do not reject the null 

hypothesis stated in equation (2.4). This implies that the five treatment means are the 
same. 

 
Wang and Sun (2013) Bayes Factor for Case 2A (k = 5 and m = 10) 
We seek to test the hypothesis, 

0: 2

0 H     against  0: 2

1 H             (3.5) 

 
The Wang and Sun (2013) Bayes factor for obtaining the weight of evidence in support of 

the null hypothesis for (𝒌 = 𝟓 𝒂𝒏𝒅 𝒎 = 𝟏𝟎) is computed as follows: 

𝐵𝐹01 =
⎾ (

𝑚𝑘 − 1
2

) ⎾(𝛼 + 1)

⎾ (
𝑘
2 + 𝛼 +

1
2) ⎾ (

𝑚𝑘 − 𝑘
2 )

(
𝑆𝑆𝐸

𝑆𝑆𝑇
)

(𝑚𝑘−𝑘−2)
2+𝛼

 

=
⎾ (

50 − 1
2 ) ⎾ (−

1
2 + 1)

⎾ (
5
2 + (−

1
2) +

1
2) ⎾ (

50 − 5
2 )

(
60.2073

62.4978
)

(50−5−2)

2+(−
1
2

)
 =    241.74          

 
Table 7: Decision Rule Table For Bayes Factor Interpretation 

Bayes Factor (𝑩𝑭𝟎𝟏) Evidence For the null hypothesis (𝑯𝟎) 
1 − 3 Not worth more a mere mention 

3 –  10 Substantial 
10 − 100 Strong 
>   100 Decisive  

 

The Bayes factor 𝐵𝐹01 = 241.74, signifies that the data has a decisive evidence in support of 
the null hypothesis of no variability between the five factors/treatments stated in equation 

(2.4). This can be seen in Table 7. Hence, its inverse 𝐵𝐹10 = 0.041 indicates negligible 
evidence that the data could occur under the alternative hypothesis. 

 
Faulkenberry (2018) BIC Based Bayes Factor for Case 2A  

 (𝒌 = 𝟓 𝒂𝒏𝒅 𝒎 = 𝟏𝟎):  
We seek to test the hypothesis, 

0: 2

0 H   against 0: 2

1 H                                                                    (3.6) 
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The Faulkenberry (2018) BIC-based Bayes factor for obtaining the weight of evidence in 
support of the null hypothesis for (𝒌 = 𝟓 𝒂𝒏𝒅 𝒎 = 𝟏𝟎) is computed as follows: 

𝐵𝐹01 = √𝑛𝑑𝑓1 (
𝐹𝑑𝑓1

𝑑𝑓2
+ 1)

− 𝑛

 

Where, n is the total sample size (𝑚𝑘) =  50. Hence, 

𝐵𝐹01 = √504 (
0.4280 × 4

45
+ 1)

− 50

 =     982.97                                       

The Bayes factor of 𝐵𝐹01 = 982.97 indicates a decisive evidence in support of the null 

hypothesis of no variability between the five factors/treatments stated in equation (4.6). 
This can be seen in Table 7. Although, it’s inverse 𝐵𝐹10 = 0.001 indicates very negligible 
evidence that the data will occur under the alternative hypothesis.  

 
Summary of Discussion for Case 2:  
The methodologies illustrated in case 2A above were replicated for the four (4) other sub-  
cases under case 2. i.e   
 𝒌 = 𝟏𝟎 𝒂𝒏𝒅 𝒎 = 𝟏𝟎, 𝒌 = 𝟐𝟎 𝒂𝒏𝒅 𝒎 = 𝟏𝟎, 𝒌 = 𝟑𝟎 𝒂𝒏𝒅 𝒎 = 𝟏𝟎, 𝒌 = 𝟑𝟓 𝒂𝒏𝒅 𝒎 = 𝟏𝟎The 

results is summarized in Table 8: 
 

Table 8: Summary of the Bayes factors proposed by Wang and Sun (2013) and  
        Faulkenberry (2018) under Case 2 

  𝑪𝒂𝒔𝒆 𝟏 ( 𝒎 𝒊𝒔 𝒇𝒊𝒙𝒆𝒅 𝒂𝒕 𝟏𝟎 𝒘𝒉𝒊𝒍𝒆 𝒌 𝒊𝒔 𝒊𝒏𝒄𝒓𝒆𝒂𝒔𝒊𝒏𝒈) 

 Formular k=5 k=10 k=20 k=30 k=35 

Wang and 
Sun (2013) 
 (BF) 

𝐵𝐹01 = 

⎾ (
𝑚𝑘 − 1

2 ) ⎾(𝛼 + 1)

⎾ (
𝑘
2

+ 𝛼 +
1
2

) ⎾ (
𝑚𝑘 − 𝑘

2
)

(
𝑆𝑆𝐸

𝑆𝑆𝑇
)

(𝑚𝑘−𝑘−2)
2+𝛼

 
241.7
4 

1.40E5 1.05E10 
1.58E1
3 

Undefine
d 

Faulkenberr
y (2018) 
BIC-based 
BF 

𝐵𝐹01 = 

√𝑛𝑑𝑓1 (
𝐹𝑑𝑓1

𝑑𝑓2
+ 1)

− 𝑛

 
982.9
7 

8.89E9 9.48E18 
6.13E2
9 

2.56E35 

Source: Results of Simulation 
  

With the number of observations per unit fixed at 𝑚 = 10 and the number of 

factor/treatment units increasing from 5 through 35, the BIC-based and the prior sensitive 
Bayes factor increased in its evidence in support of the null hypothesis all through.  

 
In all the cases studied, the Faulkenberry (2018) BIC-based Bayes factor proved to be more 
consistent in increasing weight of evidence in support of the hypothesis under test. 
Particularly, it has the same value at all sizes. 

 

The Wang and Sun (2013) Bayes factor indicated “undefined” at 𝑘 = 35 𝑎𝑛𝑑 𝑚 = 10. This 

signifies that its inverse 𝐵𝐹10 = 0. This means that there is entirely no evidence in support of 
the alternative hypothesis stated in equation (3.5) at that point. 

 
Conclusion 
In this work, we examined two Bayes factors (a prior sensitive and a BIC-based) under two 
cases (number of factors is fixed while observation per factor is increasing (i.e. random) and 
number of observations per factor is fixed while number of factors is increasing (i.e. 
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random)). In both scenarios, the two Bayes factors were consistent in increasing weight of 
evidence in support of the null hypothesis of “Zero Between Treatment Variability of the 
Factors/Treatments” been compared. As the sample size became large under the two cases, 
the prior sensitive Bayes factor became unavailable (impracticable).  Specifically, under case 

1, (𝒌 = 𝟓 𝒂𝒏𝒅 𝒎 𝒊𝒔 𝒓𝒂𝒏𝒅𝒐𝒎), the R software package used in obtaining the Bayes factor for 

testing the null hypothesis gave a response “out of range of Gamma function” at 𝑚 ≥ 69. 

Also under case 2, (𝒎 = 𝒎𝒎 𝒎𝒎𝒎 𝒎 𝒎𝒎 𝒎𝒎𝒎𝒎𝒎𝒎), the R software package used in 
obtaining the Bayes factor for testing the null hypothesis gave a response “out of range of 
Gamma function” at 𝑘 ≥ 35. 

 
In generalization, when the sample size becomes large, precisely at (𝑘𝑘 ≥ 350), the prior 
sensitive Bayes factor proposed by (Wang and Sun 2013) has difficulty and in most cases 
becomes impracticable. A further examination reveals that its impracticality for large sample 
sizes lies in the Gamma function involved in its computation. Hence a need to develop an 
alternative to the Gamma functions.This confirms the assertion of other researchers (See, 
Faulkenberry, 2018) who stated that Bayes factors for more complex designs are quite 
nontrivial to compute, and such computation is an active area of research today (e.g., 
Nathoo and Masson, 2016). 
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