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Abstract  The study investigates the asymptotic consistency and efficiency of Bayesian estimator due to violation of homoscedasticity cum non-multicollinearity properties. Mean Square Error( MSE) and Bias were the performance measuring criteria on twin non-spherical disturbances. The seed was to 12345; � were set at � = �2.5,1.5,1,0,0,0.5
; Xs variables  as  design matrix was generated from the multivariate normal distribution with � > 0 and  
��. �� and �� were contaminated with Harvey (1976) heteroscedastic error structure; ��,…	��  were collinear covariate with pairwise correlation of 0.9, the sample sizes were set as 25, 50,70,100,200,500 and 1000. The number of replications of the experiment was set at 11,000 with burn-in of 1000 which specified the draws that were discarded to remove the effect of the initial values. The thinning was set at 5 to ensure the removal of the effect of autocorrelation in our MCMC simulation.  In this paper, the study was able to depict the asymptotic consistency and efficiency of the hetero-lasso estimator at large sample sizes, the study affirmed that Bayesian hetero-lasso estimator performed well when the sample size is large. The outcome of the study revealed improved performances of the estimator in the model parameter estimates asymptotically.  
Keywords: LASSO, Bayesian Inference, heteroscedasticity, mulcollinearity and Gibbs          sampler 
 
Introduction Collinearity arises from two sources namely model and data based collinearities. Model based collinearity arises when the model are defined with collinearity structures such as lasso type estimator of which some tuning and shrinkage parameters are defined not in ordinary form, these parameters make significant impact on the selection and estimation of the parameters., the later comes from the structure of datasets where two or more predictors variables are pairwise related. More interestingly, the two types of heteroscedasticity which are model and data based heteroscedasticity earlier examined in Oloyede (2013) were incorporated in to the model and data used in the study with four different problems were mixed up.  The adverse effects of collinearity manifested primarily in affecting the parameter estimates and their standard errors (Peter, 1999). A regression coefficient does not reflect any inherent effect of the particular predictor variable on the response variable but only a marginal or partial effect, given whatever other correlated predictor variables are included in the model (Neter etal, 1999).   Correlations among covariates in the predictor variables of linear econometric model cum presence of heteroscedasticity affect the precision of the inferences of the parameter estimates. Obviously, the inferences violate efficiency and consistency properties of estimation, though the estimators may be unbiased, the standard error and test of hypothesis computed for the estimators are invalid, Mean Squares Error and Bias may be inflated. From the previous study of heteroscedasticity in the literature, Ordinary Least Squares becomes inefficient and inconsistent when heteroscedasticity is present in the data and/or model (Hadri & Guermat, 1999; Robinson, 1987; White, 1980).   Hoerl and Kennard (1970) proposed ridge regression which minimises residual sum of squares subject to a constraint ∑����� ≤ � where the shrinkage parameter � = 2. Frank and 
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Friedman (1993) introduced bridge regression which minimizes residual sum of squares (RSS) subject to a constraint ∑����� ≤ � where � > 0 with a special case of 0. Tibshirani (1996) formulated least absolute shrinkage and selection operator popularly tagged as LASSO with tuning parameter, this off course minimizes residual sum of squares (RSS) subject to a constraint ∑���� ≤ � with � ≥ 0 which is more or less bridge regression when tuning parameter  � = 1, Lasso is a special case of penalized least squares which penalizes the parameter estimates and shrink some of the estimates to zero. This is a way to compensate for the presence of multicollinearity in the data and/or model, of which if not penalized may make the covariates of explanatory variables to have zero determinant Severien and Eric (2012). Lasso is a good selection operator which showcases the uninfected estimates after series of iterative algorithms. Series of extension of lasso emerged recently in the literatures, adaptive lasso was invented by Zou (2006), the elastic net was introduced by Zou and Hastic (2005) which minimises RSS subject to constraint ��∑���� + ��∑ ������� � ≤ �, where �� and �� denote tuning parameters one and two. Tibshirani (2005)  proposed fused lasso while Group lasso was proposed by Yuan and Lin (2006), Smoothly Clipped Absolute Deviation SCAD was introduced by Fan and Li (2001). Daye et al (2011) explored high dimensional heteroscedastic regression. All these estimators did not consider the incorporation of heteroscedastic error structure, this is what this paper intend to examine. Heteroscedasticity, a significant non-spherical disturbance with multicollinearity was recently looking into in the literature. Severien Nkurunziza et al (2012) examined shrinkage and lasso in high dimensional heteroscedasticity models. Due to nonlinearity of the model, the bridge model does not always perform the best in estimation and prediction compared to other shrinkage models. Wenjiang (1998) proposed general approach to solve bridge regression for  � ≥ 1. In their studies Qing et al (2010) opined that Bayesian elastic net outperformed elastic net in variable selection for more complicated models, it equally outperformed Bayesian lasso in prediction accuracy for small samples from less sparse modes. The choice of penalty parameters ��  and  ��  is somehow simple by introducing hyper priors on them. This was exemplified by Park and Cassela (2008). Minjung etal (2010) claimed that all the lasso models with the exception of elastic net, the  �  and  �  parameters are conditionally independent given the �′!  shrinkage parameter leading to a straightforward Gibbs sampler. Anirban et al (2013) proposed Dirichlet prior and compared it with Bayesian lasso prior, thus concluded that their proposed prior outperformed Bayesian lasso prior due to its strong concentration around the origin. Should there are several relatively small signals, they opined that dirichlet prior can shrink all of them towards zero.  Since there are two categories of multicollinearity {data and model based multicollinearity} so as also there exist data and model based heteroscedasticity, the objective of this paper is to examine the asymptotic properties of linear regression model when there are presence of both multicollinearity and heteroscedasticity in both data and model.  
Model Designs: Bayesian Hetero-Lasso Let " = �� + # with #~%(0, 
��Ω) where Ω  is a positive definite matrix of order				( × (. A case where #~%(0, 
�I) is a homoscedastic model with constant variance, but when #~%(0, 
��Ω) indicates unequal variances of the diagonal element of  ( × ( matrix of +(##′) which is regarded as heteroscedastic error structure,  " = �� + # be truncated with both collinear of different tuning � and one component heteroscedasticity error structure with , as the scale; y as an n-vector of random responses; X as an ( × -  design matrix of corrupted  with collinear and heteroscedastic, �  as a p-vector parameters and u as an n-vector of heteroscedastic error structures 
��  . = 1,… , (. " = �0 + ∑ ���� � �� + #�                                                                                              2.1                                                          
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Let  ��			 and �� be contaminated with multiplicative heteroscedasticity using Harvey  (1976) which can be expressed as 
�� = 
�(�0 + ���� + ����)1  where , is an unknown parameter which determine the degree of heteroscedasticity, thus our variables in �� to �� are embedded with collinearity. Adopting a full Bayesian inference, we examined the likelihood function, prior distribution for the parameters, hyper-parameters in the model, with MCMC algorithm.  The likelihood function of 2, where 2 = (�� , �� , �, ,) given the sample vector �� = (. =1,2,… , -)′     and " = ("�, "�, … , "3)′ is expressed as 4(2, 
|�, ") = (26
�)73/�∏ exp =− ��σ?∑ @yB − xβC�DB � EDB �                                               2.2                                                  Incorporating multiplicative heteroscedastic-lasso into the likelihood on equation 2.2, thus error u is changed to w 4(�� , ��, ,� , 
�|�, ") = F26
��G73/�∏ �H7δI/��exp J− ��KL?∑ (yB − x�)′w7δI(yB − x�)DB � NDB �       2.3   To derive the full Bayesian density, the error density function eq 2.3 is conjugated with Gaussians, and inverse-gamma priors. It is noteworthy that  Zou and Hastic(2005) said solving the Lasso problem is just like deriving marginal posterior density mode of �|"  particular when the prior distribution of � is given as  6(�) ∝ PQ-R−λ�∑ �βB�SB � T Qing et al(2010). Instead multi-normal Gaussian prior is proposed for  ��, gamma prior for tuning parameter ��, heteroscedastic ,� and inverse gamma prior for 
��. Marginal posterior density is obtained by integrating the joint posterior density with respect to each parameter, thus, expert opinion were adopted by assuming the set of parameters �� , ��	, ,�U(V	
�   as independent marginal distribution.   The study assumed a prior density 6(�� , ��, ,� , 
�) = 6(��)6(��)6(,�)6(
�)  as expressed below:  6(�) ∝ F26
��G7W? exp J− ��KL? 	(�� − �)�N , � > 0;                                                      2.4                                   6(��) ∝ (��)XYZ� exp(−[�/��) , �� > 0                2.5                                                                      6(,�) ∝ (,�)\YZ� exp(−V�/,�) , ,� > 0                                                                           2.6                        6F
��G ∝ 				 F
��G]YZ� expF− �̂/
��G , 
� > 0                                                                      2.7                                                                                                                              The posterior distribution of 2 = (�� , �� , ,� , 
�). Considering independence among the parameters is given by :  6(�� , ��, ,� , 
�|�, ") ∝ (26
�)7W?6(��)6(,�)6(
��) exp =− ��K? 	(�� − �)�E∏ �H7_/��3� � exp	�− �K` ([� + V� + �̂ +��∑ (yB − xβ)′w7λ(yB − xβ) + λ�∑ �βB�SB � 
3� �                                                        2.8      where U�, [�, a�, V�, 	P�, �̂  are the hyper-parameters for the gamma and inverse-gamma priors. Hyper-parameters are excluded for ��-parameters since they would be estimated from the data and may be arbitrarily small leading to problems which may eventually affect the inferences. Integrating the posterior 6(�� , ��, ,� , 
�|�, ")   with respect to 
� , thus the joint  posterior distribution for (�� , ��, ,�) is obtained as:  6(�0, ��, ��, �, 
|�, ") ∝ (26)7W?6(��)6(,�) exp =− �� 	(�� − �)�E∏ bH7c?b3� � exp	�−([� + V� + �̂ + ��∑ (yB − xβ)′w7λ(yB −3� �xβ) + λ�∑ �βB�SB � 
7(XYZ\YZ]YZ3 �d )                                                                                  2.9                                             
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Gibbs Algorithm update is performed on the full conditional distribution of 
�� ∝ ef(U� +3� , [� + ��∑ (yB − xβ)′w7λ(yB − xβ) + λ�∑ �βB�SB �3� � ). This yielded the following full conditional density of the parameters �� , ��, ,�  and 
�: 6(��|��, ,� , �, ") ∝ exp =− �� 	(�� − �)�E∏ �H7_/��3� � exp	�− ��∑ (yB − xβ)′w7λ(yB −3� �xβ)+λ�∑ �βB�SB � 
7(XYZ\YZ]YZ3 �d )                                                                                 2.10                       6(
�|�� . ��, ,� , �, ") ∝ F
��G7(gY7�7D/�)expF−[�/
��G∏ �H7_/��3� � exp	�− �KL? ([� + ��∑ (yB −3� �xβ)′w7λ(yB − xβ) + λ�∑ �βB�SB � 
7(XYZ\YZ]YZ3 �d )                                                             2.11                                                                               6(��|�� , ,� , �, ") ∝ (��)(hY7�7D/�)exp(−V�/��)�H7_/�� (V� + ��∑ (yB − xβ)′w7λ(yB − xβ) +3� �λ�∑ �βB�SB � 
7(XYZ\YZ]YZ3 �d )                                                                                        2.12 6(,�|�� , �� , �, ") ∝ (��)(iY7�7D/�)exp(− �̂/��)�H7_/�� ( �̂ + ��∑ (yB − xβ)′w7λ(yB − xβ) +3� �λ�∑ �βB�SB � 
7(XYZ\YZ]YZ3 �d )                                                                                        2.13  
 
Results 
 In this study, Bayesian Hetero-lasso was presented with multiplicative heteroscedasticity structure and collinear covariates. Parameters were obtained through the posterior point estimate of Gibbs sampler simulation. The level of convergence of the chains were monitored using the method proposed by Gelman and Rubin (1992) and graphic analysis was carried out using coda package in R package.   
 
Table 1: Performance of Bhetlasso based on Absolute Bias @ Scale of  
     Heteroscedasticity with sample sizes 

Sample jk lm nok nop noq nor nos not  1.6338 0.1 0.0038 0.0038 0.0073 0.0052 0.0081 0.0202  1.8416 0.6 0.0339 0.021 0.0462 0.0209 0.0948 0.0839 25 1.8416 0.9 0.0505 0.0318 0.0644 0.038 0.1581 0.1087  1.8416 2 0.1056 0.0763 0.1156 0.1235 0.4617 0.127  1.4209 0.1 0.0269 0.0091 0.0033 0.0012 0.0184 0.0163  1.4209 0.6 0.1582 0.0688 0.0192 0.0144 0.1046 0.1146 50 1.4209 0.9 0.2368 0.1043 0.0297 0.0216 0.1514 0.1788  1.4209 2 0.5226 0.2335 0.0702 0.0463 0.3235 0.4141  0.3309 0.1 0.0068 0.0043 0.0682 0.0267 0.0014 0.0129  0.3309 0.6 0.0072 0.0493 0.4146 0.1532 0.0001 0.1419 70 0.3309 0.9 0.007 0.077 0.6248 0.2273 0.0009 0.2184  0.3309 2 0.0042 0.182 1.4005 0.4974 0.0189 0.4785  2.638 0.1 0.012 0.0016 0.0097 0.0232 0.0046 0.0099  2.638 0.6 0.0774 0.0064 0.0466 0.1549 0.0201 0.0653 100 2.638 0.9 0.1174 0.0091 0.0568 0.2451 0.0231 0.1054  2.638 2 0.2674 0.0176 0.0634 0.6008 0.0124 0.2796  0.0286 0.1 0.0174 0.0013 0.0295 0.0491 0.0326 0.0609  0.0286 0.6 0.0053 0.0014 0.0275 0.0604 0.0562 0.102 200 0.0286 0.9 0.0016 0.0026 0.0282 0.0694 0.0681 0.1295  0.0286 2 0.0249 0.0046 0.044 0.1172 0.0938 0.2531  2.0532 0.1 0.0017 0.0078 0.0041 0.0057 0.0091 0.0003  2.0532 0.6 0.0081 0.0457 0.0209 0.0429 0.0543 0.0024 500 2.0532 0.9 0.0121 0.0686 0.0294 0.0666 0.0837 0.0056  2.0532 2 0.0283 0.1532 0.0528 0.161 0.2027 0.0284  2.7683 0.1 0.0004 0.0009 0.0055 0.0029 0.0008 0.0003  2.7683 0.6 0.0033 0.0057 0.0411 0.0144 0.0037 0.0037 1000 2.7683 0.9 0.005 0.0084 0.0631 0.0209 0.006 0.0055  2.7683 2 0.0117 0.0171 0.1456 0.045 0.0177 0.0103 
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Figure 1: Depicting Performance of Bhetlasso based on Absolute Bias @ Scale of  
       Heteroscedasticity with sample sizes  Table  and figure 1 revealed the outcome of the estimation of Bayesian hetero-lasso based on the  Absolute Bias Performances  with different  Scales of Heteroscedasticity  and u =0.9.  The study observed that biases for  ��,	��, �� , �w �x,  and �� were consistent, as the scale of heteroscedasticity increased so also the biases were absolutely increased algebraically. At sample size 70, the biases were absolutely interchangeable for ��  and  �x   which brought about inconsistency while for 		��, ��, �w, ��, the study observed consistency since increase in scale of heteroscedasticity brought about absolute increase in the biases. Likewise, sample size 200 brought about inconsistency for �� and 	��, while other parameters were consistent.  
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Table 2: Performance of Bhetlasso based on mean squares error @ scale of  
     Heteroscedasticity with sample sizes 

Sample lm nok nop noq nor nos not  0.1 0.0051 0.0001 0.0009 0.0081 0.0048 0.0025 25 0.6 0.0014 0.0006 0.0037 0.0039 0.0131 0.0097  0.9 0.0028 0.0012 0.0058 0.005 0.029 0.0143  2 0.0113 0.0059 0.0146 0.0187 0.2158 0.0176  0.1 0.0015 0.0176 0.0001 0.0026 0.0061 0.0017 50 0.6 0.0257 0.0226 0.0006 0.003 0.0174 0.0148  0.9 0.0567 0.029 0.0012 0.0034 0.0297 0.0338  2 0.2735 0.0734 0.0055 0.0053 0.1116 0.173  0.1 0.0853 0.0369 0.0048 0.0009 0.0145 0.304 70 0.6 0.0853 0.0397 0.1724 0.024 0.0153 0.3281  0.9 0.0854 0.0435 0.3909 0.0523 0.0156 0.3578  2 0.0853 0.0716 1.9622 0.2477 0.0153 0.5449  0.1 0.0011 0.0006 0.0014 0.0006 0.0003 0.001 100 0.6 0.0069 0.0006 0.0037 0.0243 0.0009 0.0052  0.9 0.0148 0.0007 0.0049 0.0604 0.0011 0.012  2 0.0727 0.0009 0.0056 0.3614 0.0005 0.0787  0.1 0.7984 0.0074 1.8383 4.504 1.5227 5.6926 200 0.6 0.7987 0.0074 1.8385 4.5043 1.5237 5.695  0.9 0.7989 0.0074 1.8385 4.5046 1.5245 5.6985  2 0.8005 0.0074 1.8386 4.5089 1.5271 5.7325  0.1 0.0004 0.0002 0.0001 0.003 0.0013 0.0005 500 0.6 0.0005 0.0022 0.0006 0.0049 0.0042 0.0006  0.9 0.0006 0.0048 0.0011 0.0076 0.0082 0.0006  2 0.0012 0.0235 0.0029 0.0293 0.042 0.0013  0.1 0.0001 0 0.0045 0.0005 0.0001 0.0003 1000 0.6 0.0001 0.0001 0.0063 0.0007 0.0002 0.0003  0.9 0.0001 0.0001 0.0087 0.0009 0.0002 0.0004  2 0.0003 0.0003 0.0262 0.0025 0.0005 0.0004 

 
Figure  3.2: Showing the  performance of Bhetlasso based on mean squares error  
          @ scale of Heteroscedasticity with sample sizes 
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 Table and figure 2 revealed  that mean squares error for ��, 	�� ��, �w , �x and �� were all depicting efficiency across all sample sizes considered in the study, as the scale of heteroscedasticity increased, so also the mean squares error for all parameters increased algebraically.   
Table 3: Performance of Bhetlasso based on Bias @ sample sizes with Scale of  
     Heteroscedasticity  Samples ,� �y� �y� �y� �yw �yx �y� 25 0.1 0.0038 0.0038 0.0073 0.0052 0.0081 0.0202 50 0.1 0.0269 0.0091 0.0033 0.0012 0.0184 0.0163 70 0.1 0.0068 0.0043 0.0682 0.0267 0.0014 0.0129 100 0.1 0.012 0.0016 0.0097 0.0232 0.0046 0.0099 200 0.1 0.0174 0.0013 0.0295 0.0491 0.0326 0.0609 500 0.1 0.0017 0.0078 0.0041 0.0057 0.0091 0.0003 1000 0.1 0.0004 0.0009 0.0055 0.0029 0.0008 0.0003 25 0.6 0.0339 0.021 0.0462 0.0209 0.0948 0.0839 50 0.6 0.1582 0.0688 0.0192 0.0144 0.1046 0.1146 70 0.6 0.0072 0.0493 0.4146 0.1532 0.001 0.1419 100 0.6 0.0774 0.0064 0.0466 0.1549 0.0201 0.0653 200 0.6 0.0053 0.0014 0.0275 0.0604 0.0562 0.102 500 0.6 0.0081 0.0457 0.0209 0.0429 0.0543 0.0024 1000 0.6 0.0033 0.0057 0.0411 0.0144 0.0037 0.0037 25 0.9 0.0505 0.0318 0.0644 0.038 0.1581 0.1087 50 0.9 0.2368 0.1043 0.0297 0.0216 0.1514 0.1788 70 0.9 0.007 0.077 0.6248 0.2273 0.0009 0.2184 100 0.9 0.1174 0.0091 0.0568 0.2451 0.0231 0.1054 200 0.9 0.0016 0.0026 0.0282 0.0694 0.0681 0.1295 500 0.9 0.0121 0.0686 0.0294 0.0666 0.0837 0.0056 1000 0.9 0.005 0.0084 0.0631 0.0209 0.006 0.0055 25 2 0.1056 0.0763 0.1156 0.1235 0.4617 0.127 50 2 0.5226 0.2335 0.0702 0.0463 0.3235 0.4141 70 2 0.0042 0.182 1.4005 0.4974 0.0189 0.4785 100 2 0.2674 0.0176 0.0634 0.6008 0.0124 0.2796 200 2 0.0249 0.0046 0.044 0.1172 0.0938 0.2531 500 2 0.0283 0.1532 0.0528 0.161 0.2027 0.0284 1000 2 0.0117 0.0171 0.1456 0.045 0.0177 0.0103  
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Figure 3: Depicting performance of bhetlasso based on bias @ sample sizes with  
       scale of heteroscedasticity  Table and figure 3 revealed the  inconsistency from sample sizes 25 to 200 for the parameter estimates ��,	��, �� , �w , �x and �� across the scale of heteroscedasticity, this is so since an increase in sample sizes brought about interchangeable in the biases obtained for all the parameters. Interestingly at large sample sizes of 500 and 1000, the study observed consistency since an increase in sample size brought about decrease in the bias. 
Table 4: Performance of bhlasso based on mean squares error @ sample sizes  
     with scale of heteroscedasticity   

Samples lm nok nop noq nor nos not 25 0.1 0.0051 0.0001 0.0009 0.0081 0.0048 0.0025 50 0.1 0.0015 0.0176 0.0001 0.0026 0.0061 0.0017 70 0.1 0.0853 0.0369 0.0048 0.0009 0.0145 0.304 100 0.1 0.0011 0.0006 0.0014 0.0006 0.0003 0.001 200 0.1 0.7984 0.0074 1.8383 4.504 1.5227 5.6926 500 0.1 0.0004 0.0002 0.0001 0.003 0.0013 0.0005 1000 0.1 0.0001 0 0.0045 0.0005 0.0001 0.0003 25 0.6 0.0014 0.0006 0.0037 0.0039 0.0131 0.0097 50 0.6 0.0257 0.0226 0.0006 0.003 0.0174 0.0148 70 0.6 0.0853 0.0397 0.1724 0.024 0.0153 0.3281 100 0.6 0.0069 0.0006 0.0037 0.0243 0.0009 0.0052 200 0.6 0.7987 0.0074 1.8385 4.5043 1.5237 5.695 500 0.6 0.0005 0.0022 0.0006 0.0049 0.0042 0.0006 1000 0.6 0.0001 0.0001 0.0063 0.0007 0.0002 0.0003 25 0.9 0.0028 0.0012 0.0058 0.005 0.029 0.0143 50 0.9 0.0567 0.029 0.0012 0.0034 0.0297 0.0338 70 0.9 0.0854 0.0435 0.3909 0.0523 0.0156 0.3578 100 0.9 0.0148 0.0007 0.0049 0.0604 0.0011 0.012 
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200 0.9 0.7989 0.0074 1.8385 4.5046 1.5245 5.6985 500 0.9 0.0006 0.0048 0.0011 0.0076 0.0082 0.0006 1000 0.9 0.0001 0.0001 0.0087 0.0009 0.0002 0.0004 25 2 0.0113 0.0059 0.0146 0.0187 0.2158 0.0176 50 2 0.2735 0.0734 0.0055 0.0053 0.1116 0.173 70 2 0.0853 0.0716 1.9622 0.2477 0.0153 0.5449 100 2 0.0727 0.0009 0.0056 0.3614 0.0005 0.0787 200 2 0.8005 0.0074 1.8386 4.5089 1.5271 5.7325 500 2 0.0012 0.0235 0.0029 0.0293 0.042 0.0013 1000 2 0.0003 0.0003 0.0262 0.0025 0.0005 0.0004  

 
Figure 4: Performance of bhlasso based on mean squares error @ sample sizes  
       with scale of heteroscedasticity    Table and figure 4 revealed similar patterns for all the scale of heteroscedasticity from scale 0.1 to 2, the Mean Squares Error depicted inefficiency for sample from sample sizes 25 to 200 but brought about efficiency for large samples from 500 sample size upward. Asymptotically, the study opined that the effects of the two non-spherical disturbances were reduce at larger sample sizes.  
 
Conclusion In this paper, a simple way of modelling and estimating heteroscedastic-collinear model under simulation approach (MCMC) was presented by incorporating it into the celebrated lasso estimator.  The study observed that modelling hetero-lasso in a full Bayesian improved the precision of the inferences of the estimates at larger samples. The study found that 1 and 2 were affected as the scale of heteroscedasticity increased while 3- 6 behaved in different way. The study concluded that asymptotically, there exist consistency and efficiency in the estimation. The approach can be applied to further studies in the area of simultaneous equation and other econometric models and non-econometric models. 
 
 
 



Journal of Science, Technology, Mathematics and Education (JOSTMED), 14(4), December, 2018  

69  

References 
 Cobb, C., & Douglas, P. (1928). A theory of production. American Economic Review, 18,  139-250.  Daye, J., Chen, J., & Li, H. (2011). High-dimensional heteroscedastic regression with an   application to eQTL. Data Analysis Biometrics, 68(1), 316-326.  Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least angle regression. The   Annals of Statistics, 32, 407-451.  Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle   properties. Journal of the American Statistical Association, 96, 1348-1360.  Frank, I. E., & Friedman, J. H. (1993). A statistical view of some chemometrics regression   tools. Technometrics, 35, 109-135.  Hadri, K., & Guermat, C. (1999). Heteroscedasticity in stochastic frontier models: A monte   carlo analysis. University of Exeter, USA., P. 18.  
 Harvey, A. C. (1976). Estimating regression models with multiplicative heteroscedasticity.     Econometrica, 44, 461-465.   Hoerl, A. E., & Kennard, R. W (1970). Ridge regression: Applications to non-orthogonal   problems. Technometrics, 12, 55-68.  Minjung, K., Jeff, G., Malay, G.,  & George, C. (2010). Penalized regression, standard errors,   and Bayesian Lassos, 5(2), 369-412.  Park, T., & Casella, G. (2008). The Bayesian Lasso. Journal of the American Statistical   Association, 103, 681-686. 
 Peter, L. B. (1999). The effect of collinearity on parameter estimates in nonlinear mixed   effect models. Pharmaceutical  Research, 6(5). 
 Qing, L., & Nan, L. (2010). The Bayesian elastic net. International Society for Bayesian   Analysis, 5(1), 151-170.   
 R-Core Team (2014). R: A language and environment for statistical computing. R  Foundation for Statistical Computing, Vienna, Austria.  URL http://www.R-project.org/. 
 Robinson, P. M. (1987). Asymptotic efficient estimation in the presence of Heteroscedasticity   of unknown form. Econometrica, 55, 875 -891.  
 Severien, N., & Eric, Y. L. (2012). Shrinkage and LASSO strategies in high dimensional  heteroscedastic models. Department of Mathematics and Statistics, University of Windsor, Windsor Ontario Canada N9B 3P4.   Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., & Knight, K. (2005). Sparsity and  smoothness via the fused Lasso. Journal of the Royal Statistical Society. Series B 67, 91-108. 



Journal of Science, Technology, Mathematics and Education (JOSTMED), 14(4), December, 2018  

70  

Wenjiang, J. F. (1998). Penalized regression: The bridge versus the Lasso. American  Statistical Association, Institute of Mathematical Statistics and interface Foundation of North America. Journal of Computational and Graphical Statistics, 7(3), 397-416.     
 White, H. (1980). A heteroscedasticity consistent covariance matrix and direct test for   heteroscedasticity. Econometrica, 48, 817-838.   Yuan, M., & Lin, Y. (2006). Model selection and estimation in regression with grouped   variables. Journal of the Royal Statistical Society, Series B 68, 49-67.   Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net.   Journal of the Royal Statistical Society, Series B 67, 301-320.  Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American   Statistical Association, 101, 1418-1429.  


