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Abstract 
Hepatitis B is a serious global health threat, it is a liver infection disease caused by 
hepatitisBvirus (HBV), which weakens the immune system of the victim. Its mode of 
transmission is through sexual contact, mother to child at birth, contact with the virus fluid, 
infected blood. Mathematical Modeling has emerged as a vital tool for understanding the 
dynamics of the spread of many infectious diseases. In this work,the SIR model of HBVwas 
used to predict the outbreak of the diseases. Euler method, which is among the suitable 
techniques for solving initial value problem (IVP) for ordinary differential equations (ODE), 
was applied to solve the 3 basic equations of the SIR model. Stability condition of each 
equilibrium point was discussed, the basic reproductive number (Rࠊ) of HBV without 
vaccination and the basic reproductive number(Rࠊ) of HBV with vaccination were estimated. 
As the global dynamics were completely determined by the basic reproductive number (Rࠊ) 
ratio, it was computed as 1.3213, which indicates that the population is in danger should 
there be an outbreak. Therefore, there is need to reduce the reproductive ratio to less than 
one; thus, vaccination of the more susceptible populace is imperative, which will guaranty 
immunity to the individual. The results obtained shows that the herd immunity is 0.2431, 
which implies that if 24.31% of the population could be immunized, the transmission rate of 
the disease would be greatly reduced, thereby enabling a control mechanism over the 
spread of the disease.  
 
Keywords: Euler’s method, Herd immunity, Reproductive number, Stability, SIR model,  
         Vaccination 
 
Introduction 
Hepatitis B is a serious global health threat, a liver infection disease caused by Hepatitis B 
Virus (HBV), which weakens the immune system of the victim. Its mode of transmission is 
through sexual contact, mother to child at birth, contact with the virus fluid or infected 
blood. In the African Region, hepatitis B is endemic which affects over 100 million people, 
mainly in West and Central Africa.The disease is so devastating as a killer disease that more 
than 20 million (≈ 11.2%) of Nigerians are affected with about 5 million (≈ 3%) on death 
annually. Statistics had shown that it contributes to high percentage of death worldwide 
(WHO, 2016). Viral hepatitis is also becoming more and more a growing cause of mortality 
among people living with HIV. About 2.6 million people living with HIV are co-infected with 
the hepatitis B virus and about 1% of persons living with HBV infection (2.7 million people) 
are also infected with HIV. Conversely, the global prevalence of HBV infection in HIV-
infected persons is 7.4%. Since 2015, WHO has recommended treatment for everyone 
diagnosed with HIV infection, regardless of the stage of disease. Tenofovir, which is 
included in the treatment combinations recommended in first intention against HIV infection, 
is also active against HBV(ibid). However, an effective vaccine is available for preventing 
viral hepatitis B, also an effective treatment is available for people with chronic hepatitis B 
infection, although for most people such treatment needs to be lifelong. In Nigeria there is a 
high burden of viral hepatitis B at a prevalence rate of 11.2% (ibid), the country has a high 
hepatitis B virus (HBV) vaccination coverage among children, although birth-dose coverage 
is sub-optimal. Screening and vaccination coverage among adults remain unsatisfactorily low 
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due to a lack of awareness among the general populace and health workers, low coverage 
of testing facilities, high cost of laboratory investigations and medications for those needing 
treatment. In May 2016, The World Health Assembly adopted the first "Global Health Sector 
Strategy on Viral Hepatitis, 2016-2020". The strategy highlights the critical role of Universal 
Health Coverage and the targets of the strategy are in line with those of the Sustainable 
Development Goals. The strategy has a vision of eliminating viral hepatitis as a public health 
problem and this is encapsulated in the global targets of reducing new viral hepatitis 
infections by 90% and reducing deaths due to viral hepatitis by 65% by 2030. WHO also 
organizes World Hepatitis Day on July 28 every year to increase awareness and 
understanding of hepatitis virus. 
 
The main aim of this research work is to model and predict the spread and offer suggestions 
on the control of Hepatitis B infection in Kaduna Metropolis. This will be done by using 
Susceptible-Infected-Recovered (SIR) model with numerical solutions based on Euler’s 
method. To show how the proportion of susceptible, infected, and recovered changes with 
time, determination of the nature of the Hepatitis B disease outbreak, determination of the 
effect of infected on the populationand an estimation of the proportion of the population 
that should be vaccinated. This paper only investigates the outbreaks of hepatitis B virus 
narrowing from several infectious diseases by applying the SIR mathematical model. The 
model does not consider differences in age, gender and non-constant population. 
 
Related Work 
Bratislava (2007) in the mathematics of infectious diseases aimed at providing an 
understanding of deterministic modeling applied to the population dynamics of infectious 
diseases. Zou et al. (2010) carried out modeling on the transmission dynamics and control 
of hepatitis B virus in China. Zou et al (2010), proposed a mathematical model to 
understand the transmission dynamics and prevalence of hepatitis B (HBV) infection in 
China. Based on the data reported by the Ministry of Health of China, the model provides an 
approximate estimate of the basic reproduction number Ro= 2.406 which indicates that 
hepatitis B is endemic in China and approaching its equilibrium with immunization program 
and control measures. The authors considered six epidemiological groups while Medley et al. 
(2001) considered only five which did not distinguish the recovered and vaccinated 
subgroups and those with two groups with latently infected (L), acute infections (I), carriers 
(C), and protective immunity (R). Letsa-Agbozo (2014) developed mathematical model of 
hepatitis Binfectious disease based on the Susceptible-Infected-Recovered (SIR) using the 
North Tongu district of the Volta region of Ghana as case study. The population size of the 
district was assumed to be constant. A system of non-linear differential equations was used 
to model the spread of the disease in the district. They solved the system numerically using 
the forth-order Runge-Kutta method. Simulation and sensitivity analyses were also 
performed on the model equations to determine the effect of different parameter values on 
the spread of the disease. It was shown that the global dynamics were completely 
determined by the basic reproductive number Rࠊ. If R1 >ࠊ, the disease-free equilibrium is 
globally stable and the disease always die out. On the other hand, if R1 <ࠊ, an endemic 
equilibrium exists and globally stable in the interior of the feasible region, and the disease 
persists at an endemic equilibrium state if it initially exists. In the absence of vaccination, 
the susceptible population will reduce sharply when an Infective is introduced into the 
population. Rodriguez (2016) in a mathematical model of Hepatitis B virus dynamics during 
Antiviral therapy discussed antiviral therapy for patients infected with Hepatitis B virus is 
only partially efficient and also in understanding the connections between the virus, immune 
responses, short-term and long-term drug efficacy and the health of the liver. The viral 
pattern ranges from biphasic, triphasic, flat phase, to virus rebound. The research also 
analyzed the model of HBV to determine the biological markers that determines decay 
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patterns. An investigation on such markers affects length of therapy and the amount of liver 
damage. The stated vaccination for newborn children is to receive a dose within 24hours 
after birth and two boosters during their childhood. It is also recommended to vaccinate 
those who require transplantation/dialysis, healthcare workers, and travelers before visiting 
an endemic area, people in prison or person with multiple sexual partners. For chronic 
hepatitis B the approved drugs are interferon (IFN) and nucleos (t)ide. The model used was 
introduced by Perelson for the study of HIV infection and first used in HBV by Nowak et al. 
It considers three (3) compartments: target uninfected cells (T), infected cells or 
hepatocytes (I) and hepatitis B virus (V) in contrast to the Ciupe et al. (2007) five (5) 
compartments of: Targeted cells (T), Infected cells (I), free virus (V), immune effector cells 
(E) and refractory cells (R). The results provided a framework for the virological and 
immunological factors involved a successful drug therapy. 
 
Materials and Method 
The Kermack and Mckendrick (1927) classic epidemic theory was used to model the spread 
of Hepatitis B, basic reproductive number and herd immunity threshold were the key focus. 
The work equally used the Euler method for the numerical solutions. 
 
Simple SIR Model of Hepatitis B 
The population isdivided into three disjoint classes of individuals: the susceptible class (S), 
the infective class (I), the removed class (R). The susceptible class consists of individuals 
who are not infective, but are prone to getting the disease and becoming infective. The 
infective class consists of individuals who are capable of transmitting the Hepatitis B disease 
to others. The removed class consists of individuals who have had the disease and are dead, 
or have recovered and are permanently immune, or are isolated until recovery.   
 
Below are the assumptions of the SIR model and diagrammatic representation of the model 
as in Fig. 1:  
1. Hepatitis B confers permanent immunity upon any individual who has completely 

recovered from it.  
2. The members of the population mix homogeneously   
3. It has a negligible short incubation period.  
4. The population remains at a fixed level N in the time interval under consideration; so 

neglect births and deaths from causes unrelated to the disease under consideration, 
as well as immigration and emigration. 

 

 
Figure 1: Flowchart of the SIR model of Hepatitis B without vital dynamics 
 
Where the proportionality constants ͔ and  are the infection and removal rates 
respectively, based on the assumptions, the following model equations are obtained:   Е(Е௧ฮ െ͔ oV

      (1) ЕȮЕ௧ฮ ͔oV െߙV
      (2)

 ЕோЕ௧ฮ Vߙ
      (3)

 

 
With initial conditions S(0) = o0, V(0) = V0 > 0, Z(0) = 0. Since S(ࠢ) + V(ࠢ) + Z(ࠢ) = 1, 
calculate R from Z(ࠢ) = 1 − o(ࠢ) − V(ࠢ). The term – ͔oV in equation (1) describes a transition 

o  V  Z  µ  ߙ  
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of infection due to the interaction between susceptible and infectives. The term – αV in 
equation (2) describes the recovery from the infection.   
Observe from (2) that   when When  and  

thenI(ࠢ)decreases, and the disease dies out. On the other hand, when S>
ఈޕand , then 

I(ࠢ) increases and an epidemic occurs i.e. an increase in infective individuals. These 
phenomena are illustrated in Fig.2 below. 

 
 S(t)  
Figure 2: The phase portrait for the oV phase plane 
 
Also (1) implies that if the term−µoV = 0, then either o = 0 or V = 0. If V = 0, thenЕȮЕ௧ฮ0ǡwhich means an infection-free population will remain infection-free forever. On the 
contrary, if I ≠ 0, and o ఈޕthenЕȮЕ௧0ǡwhich is a threshold condition. 

 
Basic Reproductive Number (ࡾ) of Hepatitis B without Vital Dynamics: 
The basic reproduction number is one of the most important threshold quantities used in 
epidemiology, it is denoted byZjǡand it is defined as the average number of secondary 
infections produced when one infective is introduced into a host population where everyone 

is susceptible, (Heffernan et al., 2005). This implies that, oሺ0ሻൎ ǡܰ or equivalently
(ሺjሻே ൎͳ. 

When it implies  and this statement gives . Again when S(0) >  it 

implies  and this statement gives .Refer to   Zj ฮ ఈ       (4)ޕ
 

When , then ͔<ߙ, implying that the disease will die out. On the other hand, 

 implies that ͔>ߙ, so an epidemic occurs.  

Also, ,  is the product of the contact rate  per unit time and the average 

infection period . It can therefore be interpreted as the average number of adequate 

contacts, a typical infective, makes with both susceptible and infected persons within the 
period. To obtain an expression for the final size of an epidemic, dividing (2) by (1) gives   ЕȮЕ( ฮ Ȯ)ޕ ఈିȮିޕ(Ȯ ฮ െͳఈޕ(        ݀Vฮ Ӷെͳఈޕ(ቁ݀ oฮ Ӷെͳ \ோబ(ቁ݀ o              (5)               

Integrating equation (5) using the initial conditions gives 
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Taking limits as ࠢ → ∞ of S(ࠢ) and I(ࠢ) = 0, then  

 

Letܭ = o0 + V0, thenܭฮ oஶ െ \ோబ� ቚ݊(ಮ(బቚ 
Making the reciprocal of Zj the subject, gives \ோబฮ ି (ಮ(బି (ಮ        (6)               

Equation (6) is known as the final size equation. 
 
SIR Model of Hepatitis B with Vital Dynamics 
When a disease persists in a population for a long period of time, birth and death must be 
taken into consideration. Let S(ࠢ), I(ࠢ) and Z(ࠢ) be proportions of susceptible, infective and 
recovered individuals respectively, each with natural death rate of  and birth rate of ֞. This 
is shown in figure 3. 
 

 
Figure 3: Flowchart of the SIR model of Hepatitis B with vital dynamics 
 
With the notations given above, the SIR model with vital dynamics for Hepatitis B is 
obtained as  Е(Е௧ฮ ֞ െ͔oV െϲo       (7)               ЕȮЕ௧ฮ ͔oV െϲV െߙV       (8)               ЕோЕ௧ฮ                VെϲZ        (9)ߙ

 
With initial conditions S(0) = o0,V(0) = V0 > 0, Z(0) = 0, where  assume ֞ = ϲ. 
SinceS(ࠢ) + V(ࠢ) + Z(ࠢ) = 1,R is calculated from Z(ࠢ) = 1 − o(ࠢ) − V(ࠢ), using the values 
ofo(ࠢ) and I(ࠢ) from the reduced systems (7) and (8) above. 
 
Equilibrium Points for SIR Model of Hepatitis B with Vital Dynamics 
Linearization approximation is a standard phase plane technique used to analyze system 
dynamics. For any SIR system with a constant host population size, at points of equilibrium 
the derivatives in (7) and (8) equals zero, thus Е(Е௧ฮ ֞ െ͔oV െϲo ฮ 0              (10)               ЕȮЕ௧ฮ ሺ͔o െϲ െߙሻV ฮ 0             (11)               

Solving simultaneously, let V = 0 from (10), then ֞ − ϲo = 0and . Since ֞ = ϲ, then it 

implies o = 1. Hence the equilibrium point is .This gives us a disease-free 
equilibrium of Hepatitis B.   

o  V  Z  µ  ߙ  

ϲ  ϲ  ϲ  

֞  
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From (11)   

Substituting the value of S into (10), gives ֞ െ͔ Ӷఙାఈޕ ቁV െϲሺఙାఈޕ ሻ                 (12)

  
Making I the subject from equation (12)  

 

thus the equilibrium point is  Ӷఙାఈޕ ǡޕ� ఙିሺఙାఈሻޕሺఙାఈሻ ቁ                 (13)

   
This equilibrium point is called the endemic equilibrium point.  
 
Hartman-Grobman Theorem states that in a continuous model, a steady state will be 
stable provided the eigenvalues of the characteristic equation are both negative (if real) or 
have a negative real part (complex). The stability can be determined by finding the Jacobian 
matrix from (10) and (11). This gives  ൬െ͔ V െϲ െ͔ o͔V ͔o െሺϲ ߙሻ൰                        (14) 

 
Stability of Disease-free Equilibruim for SIR Model of Hepatitis B with Vital 
Dynamics 
From earlier calculations, the disease-free equilibrium is . In order to 
determine the stability of the model at this point, evaluate the Jacobian matrix at this 
equilibrium point and find the eigenvalues corresponding to this point. Evaluating the 
Jacobian at the disease-free equilibrium point, leads to ྖሺͳǡ0ሻฮ ൬െ͔ ሺ0ሻെϲ െ͔ ሺͳሻ͔ሺ0ሻ ͔ሺͳሻെሺϲ ߙሻ൰ฮ Ӷെϲ െ͔0 ͔ െϲ െߙቁ             (15) 

Next find the characteristic equation which is given by ݀Ŏࠢሺƒ െڲVሻฮ 0ǡwhere is the 
eigenvalues of A and A an ×݊ matrix. Thus  

  

= det ൬െϲ	– ڲ	 െ͔0 ͔	– 	ϲ െ	ߙ	–  ൰ڲ	

= (−ϲ − λ) (͔ − ϲ − ߙ − λ) − (−͔) (0) 
Because det (ƒ − λV) = 0, 
Implies (−ϲ − λ)(͔ − ϲ − ߙ − λ) −(−͔) (0) = 0 
Therefore, λ1 = −ϲ< 0 and λ2 = ͔ − ϲ − (16)              .ߙ 
Thus, the stability of the disease-free equilibrium depends on the values of ϲ, ߙand͔. 
 
The Basic Reproductive Ratio (ࡾ) of Hepatitis B with Vital Dynamics 
From (7) and (8), it is concluded that the average time of an infection is  and as 

infectious individuals infect others at rate ͔, the basic reproductive number Zj ฮ ఈାఙ             (17)ޕ
  

For det(ƒ − λV) to be asymptotically stable, both eigenvalues must be negative. From det (ƒ 
− λV) = 0, it is clear that λ1 = −ϲ and therefore if  λ2 = ͔ − ϲ – 0 >ߙ then both eigenvalues 
are negative and Z0 < 1. Hence the disease-free equilibrium is asymptotically stable. On the 
other hand, if λ2 = ͔ − ϲ – 0 <ߙ, then det(ƒ − λV) is unstable.  
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Endemic Equilibrium of Hepatitis B with Vital Dynamics: The endemic equilibrium at 
the point in time where all the compartments of the population coexist is called the endemic 
period. Considering the situation whereby there is coexistence of the two main categories 
(i.e. the susceptible and the infective). This is seen in the endemic equilibrium point in the 
equation below  Ӷఙାఈޕ ǡޕ� ఙିሺఙାఈሻޕሺఙାఈሻ ቁ     (18) 

In order to determine the stability of this point, just resort to the same approach used in 
determining the stability of the disease-free equilibrium. The Jacobian matrix is evaluated at 
the endemic point by putting (18) into (14) 

 

The characteristic equation given by det(ƒ − λV) = 0 is then solved, where λ is the 
eigenvalues and A is an ൈ݊  ݊matrix. Thus,   

 

 

det (ƒ − λV) = 0, implies  
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؆ഄశഀ േටӶ ؆ഄశഀ ቁమି åሺޕ� ఙିሺఙାఈሻଶ                   (19) 
Hence, the stability of the endemic equilibrium depends on the values of ϲ, ߙ, ͔ and ֞. SIR 
Model with Vaccination: In general, use SIR model to describe the transmission dynamics of 
the disease if the vaccination leads to permanent immunity e.g. assume that a portion of 
susceptible, ßo, go to the removal compartment R directly, due to permanent immunity 
obtained from vaccination, as depicted in figure 4. 

 
Figure 4: Flowchart of an SIR model with vaccination. 
where  is the vaccinating rate for the susceptible, from the diagram above (Fig. 4) Е(Е௧ฮ ֞ െ͔oV െϲo െßo,     

 (20)               ЕȮЕ௧ฮ ͔oV െሺϲ െߙሻV,         (21)               ЕோЕ௧ฮ VെϲZߙ ßo,         (22)               

where it is assumed֞ = ϲ + ß. 
 
Equilibrium Points for SIR Model with Vaccination: 
The equilibrium points are solved using, ֞	 െ	͔oV	 െ	ϲo	 െ	ßo	 ฮ 	0       (23) ሺ͔o	 െ	ϲ	– 	ሻVߙ	 ฮ 	0        (24) 
Solving simultaneously and from  (24) ͔o	 െ	ϲ	 െ	ߙ	 ฮ 	0 o ฮ ఙାఈޕ         (25) 

Since ֞ = ϲ + ß, then it impliesS = 1. Hence the equilibrium point is 0ܧ(o∗, V∗) = (1,0). This 
gives us a disease-free equilibrium of Hepatitis B. Substituting the value of S into (23), leads 
to ֞	 െ	͔oV	 െ	ϲo	 െ	ßo	 ฮ 	0 ͔oV ฮ ֞ െϲo െßo V ฮ ͔֞o െϲo͔o െßo͔o V ฮ ͔֞o െϲ͔ െß͔

 V ฮ ͔֞ Ӷ ͔ϲ ߙቁെϲ͔ െß͔
 V ฮ ͔֞ െϲሺϲ ߙሻെßሺϲ ߙሻ͔ሺϲ ߙሻ  V ฮ ޕ� ሺିఙାሻሺఙାఈሻޕሺఙାఈሻ      (26) 

Thus, the equilibrium point is   Ӷఙାఈޕ ǡޕ� ሺିఙାሻሺఙାఈሻޕሺఙାఈሻ ቁ    (27)  

This equilibrium point (27) is called the endemic equilibrium point. 
The stability is determined by finding the Jacobian matrix using (23) and (24). This gives  ྖ ฮ ൬െ͔ V െϲ െß െ͔ o͔V ͔o െሺϲ ߙሻ൰   (28) 

 

֞ 

 

o  V  Z  µ  ߙ  

ϲ  ϲ  ϲ  

 

 b 
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Disease-Free Equilibrium for SIR Model with Vaccination 
Evaluating the Jacobian at the disease-free equilibrium point, gives ྖሺͳǡ0ሻฮ det ൬െμሺ0ሻെσ െb െ͔ ሺͳሻμሺ0ሻ μሺͳሻെሺσ	 	αሻ൰ ྖሺͳǡ0ሻ	ฮ 	 det ൬െσ	 െ	b െ͔0 μ	 െ	σ	 െ	α൰     (29) 

Thus,   det(ƒ − λV) = det ൬െσ	 െ	b െ͔0 μ	 െ	σ	 െ	α൰െ	λ Ӷͳ 00 ͳቁ൨ ฮ det ൬െσ	 െ	b െλ െ͔0 μ	 െ	σ	 െ	α െλ൰ ฮ 	ሺെϲ	 െ	ß	 െ	ڲሻሺ͔	 െ	ϲ	 െ	ߙ	 െ	ڲሻ	െ	ሺെ͔ ሻሺ0ሻ 
And since det (ƒ − λV) = 0, this implies (– ϲ − ß − λ)(͔ − ϲ − ߙ − λ) − (−͔)(0) = 0 
Therefore, λ1 = −ϲ − ß or λ2 = ͔ − ϲ–ߙ, these are actually the eigenvalues corresponding to 
the disease-free equilibrium and so ܧjሺo∗ǡV∗ሻฮ െϲ െßor͔ െϲ െ(30)    ߙ 
Hence, the stability of the disease-free equilibrium with vaccination depends on the values 
of ,ߙ, ßf͔݊݀.  
 
Basic Reproductive Ratio ( ) of Hepatitis B with Vaccination 
For ݀Ŏሺࠢƒ െڲVሻ to be asymptotically stable, both eigenvalues must be negative. 
From݀Ŏሺࠢƒ െڲVሻฮ 0ǡ it is clear that ڲ\ ฮ െϲ െß is negative and therefore ifڲଶฮ ͔ െϲ െߙ൏0 then both eigenvalues are negative and Zj ൏ͳ. Hence the disease-free equilibrium is 
asymptotically stable. On the other hand, if λ2 = ͔ − ϲ − 0 <ߙ, then det(ƒ − λV) is unstable 
and the stability of the disease-free equilibrium with vaccination depends on the values ofϲ, ߙ, ßand ͔.  
 
Endemic Equilibrium of Hepatitis B with Vaccination: The endemic equilibrium point 
is given by equation (31) below, where there is coexistence between the two main 
categories.   Ӷఙାఈޕ ǡޕ� ሺିఙାሻሺఙାఈሻޕሺఙାఈሻ ቁ    (31)  

In order to determine the stability of this point, resort to the same approach used in 
determining the stability of the disease-free equilibrium. The Jacobian matrix at the endemic 
point is given by 
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Next is to find the characteristic equation which is given by det(ƒ − λV) = 0. Where λ is the 
eigenvalue and A is an  ݊×  ݊matrix. Thus, 

 
Because det(ƒ − λV) = 0, implies  ൬െ͔ ֞ ßሺϲ ߙሻሺϲ ߙሻ െڲ൰ሺെڲሻቆ͔֞ െϲሺϲ ߙሻሺϲ ߙሻ ቇሺϲ ߙሻฮ ଶ͔֞ڲ 0 െßሺϲ ߙሻሺϲ ߙሻ ڲ ͔֞ െϲሺϲ ߙሻฮ 0 ሺϲ ߙሻڲଶ൫͔֞ െßሺϲ ߙሻ൯ڲ ሺϲ ߙሻሺ͔֞ െϲଶെϲߙሻฮ ǡଶฮ\ڲ 0 െሺ͔֞ െßሺϲ ߙሻሻേඥሺ͔֞ െßሺϲ ߙሻሻଶെͶሺϲ ߙሻሺϲ ߙሻሺ͔֞ െϲଶെϲߙሻ2ሺϲ ߙሻ  

ǡଶฮ\ڲ ሺି؆ഄ ሺ್శഀ ሻሻሺశഀ ሻ േඨӶ؆ഄ ሺ್శഀ ሻሺశഀ ሻ ቁమି åሺޕ� ఙିሺఙାఈሻሻଶ      (32) 
  

Hence, the stability of the endemic equilibrium with vaccination depends on the values of ϲ, ߙ, ͔, ֞ and ß. Herd Immunity Threshold: In a large group of individuals where there exists a 
contagious disease, if a large enough of individuals is immune to the disease, the chances 
that a chain of disease transmission will be interrupted are very high, resulting in self-
contained, small outbreaks that will die out quickly, (Diekman and Heesterbeek, 2000). 
Thus, the wall that is set up by the vaccinated ones will protect individuals that are not 
immune. The Herd Immunity Threshold (࿖1) is percentage of the population that needs to 
be immune to control transmission of a disease. Diekman and Heesterbeek (2000) provided 
an equation for estimating the Herd Immunity Threshold. The equation is given as 

 

Substituting , into the equation above, gives ࿖\ ฮ ͳെቆͳൊӶ ͔ϲ ߙቁቇฮ ͳെ൬ϲ ͔ߙ ൰ ∴ 					࿖\ ฮ ޕ ఙିି ఈޕ          (33) 

Therefore, the level of vaccination is directly proportional to the herd immunity threshold; as 
the amount of vaccination increases, the herd immunity threshold also increases.  
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Numerical Solution Using Euler Method:This refers to the formulation of the SIR model 
using Euler method by first parametrizing the model and then transforming the SIR model 
into the Euler formula. Now, the SIR model is used to illustrate the transfer of the epidemic 
through the interaction of the following three different variables: o = Number of people that are susceptible to Hepatitis B V = Number of people infected with Hepatitis B Z = Number of people recovered from Hepatitis B with total immunity 
It makes sense to assume that a fixed population of N people, whereby there are no births 
and deaths by natural cause i.e.  

 ܰ= o + V + Z 
This is because the population is fixed and therefore, there are only three compartments in 
which the population may fit into. Thus, the total of the number of people susceptible, 
infected and recovered in equivalent to the total population. The assumption that N is fixed, 
with no births or deaths, makes sense given in days, although it is a simplification (Hossain 
et al., 2017). 
 
These variables change over time, so define the variable ࠢ = time in days and set  = 0 at 
the initial time.  The model uses two parameters ݏ (the rate of infection) and ߛ (the rate of 
recovery), with 0 <ߛ ,ݏ.  Given these parameters, the model uses 3 differential equations. 
The rate of change of the number of people susceptible to the disease over time Е(Е௧ฮ  Vo     (34)ݏ

The rate of change of the number of people recovered over time  ЕோЕ௧ฮ  V      (35)ߛ
The rate of change of the number of people infected.  ЕȮЕ௧ฮ Voݏ െߛV     (36) 
 
Parameterization of the model: In order to calculate ݏ(the rate of infection) andߛ(the 
rate of recovery), it helps to define two more parameters.  ܦ = Duration of disease for those recovered  ܯ = Mortality rate for those who die per day   
This leads to two further equations: 
The rate at which the disease is spread  ߛฮ \     (37) 

The infection rate of the disease  ݏ ฮ ெ(      (38) 

Transformation of Euler Equations for SIR modeling: Consider a "slope formula," i.e., a way 
to calculate dݕ/݀ ࠢat any point ࠢ, ݕ), then generate a sequence of -values,  ݕjǡݕ\ǡݕଶǡݕଷ⋯ 
By starting from a givenݕj and computing each rise as slope x run. That is,  ݊ݕ݊ = 1+ݕ + slopen ∆t 
where∆ࠢ is a suitably small step size in the time domain.  
It really does not matter in this calculation if the slope formula depends not just on t and y 
but on other variables. For instance, a case where x and z happen to be other dependent 
variables in a system of differential equations; obviously, for an SIR model, the dependent 
variable names areo, V and Z;which leads to the three Euler formulas of the form: o +݊1 = o  ݊+ slopen∆t     (39) 

I +݊1 = I  ݊+ slopen∆t     (40) 
R +݊1 = R  ݊+ slopen∆t     (41) 

More specifically, given the SIR  (34), (35), and (36),  
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The Euler formulas become  o +݊1 = o Vݏ ݊− o݊ ∆݊ࠢ     (42) V +݊1     = V Vݏ) ݊+ o݊ V݊)∆t     (43) Zߛ ݊− +݊1    = Z  V݊∆t      (44)ߛ ݊+
To calculate using these formulas, there must be explicit values forߛ ,ݏ,S(0), V(0), Z(0) and 
∆ࠢ.  
 
Results and Discussion 
Computational Analysis of SIR and Euler  Methods 
Considering a Hepatitis B outbreak in Kaduna metropolis for 60 days, the recorded number 
(N) of people infected was 267, the number (I) of people who died as a result of the 
infection was 45 and the number (R) of people that recovered was 12. Note that the 
recovered includes both who died and the survivors with permanent immunity. Using this 
data and the following parameters with values:N = 267; I = 45; R = 12 
 
Thus, the number of susceptible is o ฮ ܰെሺV Zሻฮ 267 െሺͶ5ͳ2ሻฮ 2ͳ0 
The duration of the disease ranges from 2 to 21 days, therefore the estimated duration 
(days) of the disease at the midpoint is given by D = 11: Thus, the rate at recovery is ߛฮ ͳͳͳฮ 0.09 

Using mortality rate of 0.105 and S =210, gives 
Rate of infectionฮ j.\jହଶ\j ฮ 5 ൈͳ0ିå 
 
In order to use the SIR model to predict the evolution of the disease, solve the system of 
differential equations using Euler method.  
 
Euler Method 
For each day, the values of S, VandZ using (42) (43) & (44) were calculated as o +݊1 = o Vݏ ݊− o݊ ∆݊t V +݊1     = V V݊ݏ) ݊+ V݊)∆t Zߛ ݊− +݊1    = Z  V݊∆tߛ ݊+
The following initial values were considered: o0 = 210;  V0 = 45;   Z0 = 12;   5= ݏ       ;0.09 =ߛ ൈͳ0ିå;  
Solving this explicitly for the transition from t = 0 to t = 1. The following values for S, I and 
R were computed (S, I, R over a two-month period); the results are shown in Table1. 
 

Table 1: Computed Values of S, I & R Using Euler’s Method 

TIME 
(DAY) 

S I R TIME 
(DAY) 

S I R 

1 205 46 16 31 107 30 128 
2 200 47 20 32 105 29 131 
3 195 48 24 33 104 28 134 
4 190 48 28 34 103 27 137 
5 185 48 32 35 102 26 139 
6 181 48 36 36 101 25 141 
7 177 48 40 37 100 24 143 
8 173 48 44 38 99 23 145 
9 169 48 48 39 98 22 147 
10 165 48 52 40 97 21 149 
11 161 48 56 41 96 20 151 
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The 

dynamics of the various compartments of the SIR model with the actual data, and Euler 
method during the outbreak are shown in Figures5&6 

 
Figure 5: The Actual Number of Susceptible, Infectives & Recovered in Hepatitis  
      B Outbreak 
 
From figure 5, it was observed that the initial number of infectives was 45, while the 
proportion of the susceptibles sharply declined from an initial value of 210 to an 
approximate minimum value of 96 from day one to day 60. The proportion of the infectives 
declined asymptotically from first day reaching a minimum value of 28 on the 59th day, 
which was maintained onwards. Also, the proportion of the recovered population increased 
exponentially and reached a value of 143 at  60th day. 
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12 157 48 60 42 95 19 153 
13 153 48 64 43 94 18 155 
14 149 47 68 44 93 17 157 
15 146 46 72 45 92 16 159 
16 143 45 76 46 91 15 160 
17 140 44 80 47 90 14 161 
18 137 43 84 48 89 13 162 
19 134 42 88 49 88 12 163 
20 131 41 92 50 88 12 164 
21 128 40 96 51 88 12 165 
22 125 39 100 52 88 12 166 
23 123 38 104 53 88 12 167 
24 121 37 107 54 88 12 168 
25 119 36 110 55 88 12 169 
26 117 35 113 56 88 12 170 
27 115 34 116 57 88 12 171 
28 113 33 119 58 88 12 172 
29 111 32 122 59 88 12 173 
30 109 31 125 60 88 12 173 
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Figure 6: Chart of Susceptibles, Infectives & Recovered with Euler Method in  
      Hepatitis BOutbreak 
 
Figure 6 shows that while the initial proportion of infectives of the Euler method was 45, the 
proportion of the recovered rose exponentially from 12 at day one to a peak value of 173 at 
the 60th day. A steady decrease in the proportion of infectives from initial value of 46 to a 
value of 12 was also observed and it remained stable as days progresses. Similarly, the 
gradual reduction in the number of susceptibles from 210 to 89 was recorded, while from 
49th day and onwards it stabilized at a value of 88. 
 
Prediction of the Evolution 
Naturally the prediction focuses on the infective individuals; results from all the scenarios 
have shown a steady rise (increase) of the number of infected individuals, which over an 
extended period of time decreases and give rise to the number of recovered individuals. This 
state can be attributed to two main reasons, sustained awareness of the disease and 
continuous medical support being given in order to assist in combating the transmission of 
the disease. Furthermore, an increased awareness opts up the consciousness of strategies 
of protection within the populace. The steep increases primarily recorded at the beginning is 
probably due to the minimal awareness, which in turn exacerbated the rate of transmission. 
The peak of each of the graph portrays the maximum number of infected individuals, after 
which transitional decrease occurred.        
 
Comparative Analysis 
However, in order for the model to have a validity and allow an informed government policy, 
it obviously needs to correspond fairly close to reality, thus compare the results obtained 
with the actual data, this shown in Table 2 and Figure 7. 
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Table 2: Real Life Data versus computed results using the SIR-Euler model 
Day Actual SIR-Euler 

1 45 46 

2 46 47 

5 46 48 

9 48 48 

10 48 48 

15 48 46 

21 48 40 

24 47 37 

26 47 35 

27 47 34 

30 46 31 

31 46 30 

32 46 29 

35 46 26 

39 46 22 

40 46 21 

45 41 16 

51 35 12 

54 32 12 

56 30 12 

57 29 12 

60 28 12 

 

 
 
Figure 7: Graph of Infectives for Actual and SIR-Euler Method in Hepatitis B  
      Outbreak 
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The graph in Figure 7, illustrates the outbreak of the infection of the SIR-Euler method with 
the actual number of infectives. Here the actual infectives exhibited similar behaviour to that 
of Euler’s though with a slight increase. The two methods gave best approximations during 
the first 20 days and roughly estimated the values towards the last 10 days. 
 
Results of SIR model with vital dynamics 
For the SIR model with vital dynamics the estimated parameters in Table 3, which were 
computed from the sourced data, were used to generate the results. 
 

Table 3: Parameter values for the SIR model with vital dynamics 
Description Parameter Value 

Birth rate  0.083 

Infectious rate  0.169 

Recovered rate  0.0449 

Natural death rate  0.083 

Vaccination rate b 0.042 

 
From (17), the reproductive number is obtained as 
R0ฮ ఈାఙฮޕ j.\ɒĥj.jååĥ	ା	j.j଼ଷฮ ͳ.32ͳ3 
 
This means that on the average, one hepatitis B patient contacts 1.3213 susceptible people 
in the population during his/her infectious period. Since the reproductive numberZ0 = 1.3213 
> 1, an outbreak of hepatitis B will result in an epidemic.  
 
Stability Analysis of the Model with Vital Dynamics 
The linear stability of the infectious free equilibrium point , is analyzed by 
substituting the parameter values in Table3 into (16), the eigenvalues corresponding to the 
infectious free equilibrium are 0.083− = 1ڲ and 2 = 0.0411; since the two eigenvalues are 
both real, one is positive and the other negative, it implies the disease free equilibrium is a 
saddle point, therefore unstable. The unstable equilibrium implies that the presence of a 
Hepatitis B positive patient will eventually result in an outbreak of the disease.   
 
The endemic equilibrium point occurs at a time where all the compartments of the 
population coexists in the population. The introduction of an infected person will infect 
others, therefore changing the health condition of a lot of people. Substituting the 
parameter values in Table3into (19), to obtain the eigenvalues corresponding to the 
endemic equilibrium, which is given by   

 

 = 1,2ڲ
Ӷି బ.ϖలవൈబ.బఴయబ.బఴయశబ.బnnవቁേ	ටӶ బ.ϖలవൈబ.బఴయబ.బఴయశబ.బnnవቁమି åሺj.\ɒĥൈj.j଼ଷିj.j଼ଷሺj.j଼ଷାj.jååĥሻሻଶ  = 1,2ڲ 
jି.\jĥേ	ඥሺj.\jĥሻమି j.j\ଷɒଶ 0.02003 + 0.05484− = 1ڲ   ݅and0.02003 + 0.05484− = 2ڲ  ݅

Since the eigenvalues have real negative parts with complex conjugates, it implies the 
endemic equilibrium is asymptotically stable.   
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Sensitivity Analysis of the Model with Vital Dynamics 
Vital dynamics that is introducing birth and death into a population when a disease persists 
for a long period of time, the results obtained are shown in Table4. 
 
Table4: Classification of the disease-free equilibrium with Vital Dynamics 

  Z0 Nature of the equilibrium  2ڲ 1ڲ   

0.083 0.11 0.0449 -0.083 -0.0179 0.083 0.8600 Stable sink 

0.083 0.169 0.0449 -0.083 0.0411 0.083 1.3213 Unstable saddle  

0.083 0.130 0.0449 -0.083 0.002 0.083 1.0164 Neutrally stable 

0.083 0.100 0.0449 -0.083 -0.0279 0.083 0.7819 Stable improper sink  

 
From (16), it is observed that the eigenvalues, 1ڲ = −ϲ and since ϲ> 0, it implies that 1ڲ < 
0. Considering the second eigenvalue, 2ڲ = ͔ − ϲ − ߙ, stability can only be obtained if 2ڲ < 
0. Thus  implying Z0 < 1.   

The disease-free equilibrium will be stable if the reproductive number is less than unity, 
i.e.Z0 < 1, whilst the disease-free equilibrium is unstable if the reproductive number is 
greater than unity, and the results in Table5 have shown this trend.  
 
Table 5: Classification of equilibrium points of the endemic equilibrium with Vital  
     Dynamics 

  Z0 Nature of the equilibrium  2ڲ 1ڲ   

0.083 0.11 0.0449 -0.01684 -0.08822 0.083 0.8600 Unstable saddle 

0.083 0.169 0.0449 -0.05484 
+0.80445i 

-0.05484 
-0.80445i 

0.083 1.3213 Stable spiral sink 

0.083 0.130 0.0449 -0.04218 
+0.80450i 

-0.04218 
-0.80450i 

0.083 1.0164 Stable spiral sink 

0.083 0.100 0.0449 -0.03245 
+0.80441i 

-0.03245 
-0.80441i 

0.083 0.7819 Stable spiral sink  

 
From Table 5, it is observed that the endemic equilibrium is stable when the reproductive 
number is greater than unity, i.e. Z0 > 1, and unstable when the reproductive number is less 
than unity, i.e. Z0 < 1.  
 
Stability Analysis of the Model with Vaccination 
Substituting the parameter values in Table3 into (30). The eigenvalues corresponding to the 
infectious free equilibrium are 0.125− = 1ڲ and 0.0411 = 2ڲ. The eigenvalues are both real, 
one being positive and the other negative, implies the disease-free equilibrium is a saddle 
point, therefore unstable.  
 
The endemic equilibrium point occurs when an infective is introduced into the population. 
Substituting the parameter values in Table3 into (32) to obtain the eigenvalues 
corresponding to the endemic equilibrium.  
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 = 1,2ڲ 

Ӷିబ.ϖలవൈబ.బఴయబ.బnమሺబ.బఴయశబ.బnnవሻబ.బఴయశబ.బnnవ ቁേ	ටӶబ.ϖలవൈబ.బఴయబ.బnమሺబ.బఴయశబ.బnnవሻబ.బఴయశబ.బnnవ ቁమି åሺj.\ɒĥൈj.j଼ଷିj.j଼ଷሺj.j଼ଷାj.jååĥሻሻଶ ඥሺj.jɒሻమି	jି.jɒേ = 1,2ڲ  j.j\ଷଶ  

0.04761 + 0.03384− = 1ڲ   ݅and0.04761 -0.03384− = 1ڲ  ݅
Since the eigenvalues have a complex conjugate with negative real parts, it implies the 
endemic equilibrium is asymptotically stable.   
 
Sensitivity Analysis of the Model with Vaccination 
Table6 displayed the sensitivity analysis of the model with Vaccination. 
 
Table6: Classification of the disease-free equilibrium with Vaccination 

 Z0 Nature of the  2ڲ 1ڲ   
equilibrium  

0.083 0.11 0.0449 -
0.125 

-
0.0179 

0.083 0.8600 Stable sink 

0.083 0.169 0.0449 -
0.125 

0.0411 0.083 1.3213 Unstable saddle  

0.083 0.130 0.0449 -
0.125 

0.002 0.083 1.0164 Neutrally stable 

0.083 0.100 0.0449 -
0.125 

-
0.0279 

0.083 0.7819 Stable improper sink  

 
From (30), the eigenvalues 1ڲ = −ϲ − ß and since ϲandß> 0, it implies that 0 > 1ڲ. 
The second eigenvalue is given as 2ڲ = ͔ − ϲ − ߙ. Stability can only be obtained if 0 > 2ڲ. 
Thus  .   

The disease-free equilibrium will be stable if the reproductive number is less than unity, 
i.e.Z0 < 1, whilst the disease free equilibrium is unstable if the reproductive number is 
greater than unity. 
 
Table7: Classification of equilibrium points of the disease endemic equilibrium  
    with Vaccination 

  Z0 Nature of the equilibrium  2ڲ 1ڲ   

0.083 0.11 0.0449 0.02656 -0.05594 0.083 0.8600 Unstable saddle 

0.083 0.169 0.0449 -0.03384 
+0.80560  ݅

-0.03384 
-0.80560  ݅

0.083 1.3213 Stable spiral sink 

0.083 0.100 0.0449 -0.01145 
+0.8050  ݅

-0.01145 
-0.8050  ݅

0.083 1.0164 Stable spiral sink 

 
From Table 7, it is observed that the endemic equilibrium is stable when the reproductive 
number is greater than unity, i.e. Z0 > 1, and unstable when the reproductive number is less 
than unity, i.e. Z0 < 1.  
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Results of Herd Immunity Threshold 
From (33), the herd immunity ratio is given as  

H1= j.\ɒĥ jି.j଼ଷିj.jååĥj.\ɒĥ 	 = 0.2431 
This implies that approximately 24.31 % of the susceptible population should be immunized 
in order to bring the spread of Hepatitis B under total control in the Kaduna metropolis. 
 
Conclusion 
The numerical solutions and sensitivity analysis gave us a clear picture of how sensitive and 
important each parameter is in the analysis. The infectious rate and the recovery rate play 
the dominant role in determining the outcome of Hepatitis B virus whenever there is an 
outbreak. 
 
In the absence of vaccination, the susceptible population will reduce sharply when an 
infective is introduced into the population. The rate of decrease is directly proportional to 
the number of infective introduced into the population. With time, the infective population 
will reduce as more and more infective recover from the disease and become immune. The 
calculated reproductive ratio (R0) was 1.1304 and this population is in danger should there 
be an outbreak. There is therefore the need to reduce the reproductive ration to less than 
one. To do this vaccination of more susceptible populace needs to be done, since it will give 
immunity to the individual. Also, awareness campaigns need to preached about the silent 
killer and by the campaign, horizontal transmission will be reduced since more and more 
people would be aware of the seriousness and consequence of sharing household items with 
someone whose HBV status is not known. The effect of vaccination was paramount from the 
solutions and sensitivity analysis. This shows that with increase in vaccination of the 
population, in addition to those who had already recovered from the disease will keep the 
population from an outbreak. The results obtained shows that the herd immunity is 0.2431, 
which implies that if 24.31% of the population could be immunized, the transmission rate of 
the disease would be greatly reduced, thereby enabling a control mechanism over the 
spread of the disease. Thus, the susceptible populace will be protected by the walls that are 
set up by the immune ones. 
 
Future work 
Further research work is needed for non-constant population since population cannot remain 
constant in reality and non-homogeneous population since the members of the population 
cannot always mix homogeneously.  
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