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Abstract 
This paper investigates the viscous dissipation Magnetohydrodynamic (MHD) convective flow of 
Maxwell fluid along a porous accelerating surface in the presence of radiation, buoyancy and heat 
generation. The Rosseland approximation for optically thick fluid is considered. The physical model 
is governed by highly nonlinear equations which were transformed using similarity variables and 
solution technique adopted is Spectral Homotopy Analysis Method (SHAM) which is carried out up 
to 5𝑡ℎ order of approximation. The influence of pertinent flow parameters on the velocity and 
temperature are presented both in tabular and graphical forms. A hike in the Eckert number gives 
a fall in both the velocity and temperature profiles. It is observed that a rise in the Deborah number 
accelerates the velocity profile but decreases the temperature profile while the magnetic field 
parameter produces an opposition to the flow. It is found that increasing the radiation parameter 
produces a significant increase in the thermal condition of the fluid temperature. The numerical 
results are in better agreement with the existing ones in literature. 
 
Keywords: Heat Transfer Buoyancy, MHD, Spectral Homotopy Analysis Method, Thermal 

Radiation, Viscous dissipation. 
 

Introduction 
Magnetohydrodynamic (MHD) convective, thermal radiation and heat generation/absorption have 
attracted the interest of many scientists and researchers due to its wide applicability in 
technological and industrial processes. Most of the industrial fluids such as molten plastics, molten 
polymers, slurries etc exhibit non-Newtonian properties. Many models has been proposed for the 
study of the characteristics of non-Newtonian fluid flow. Of the proposed models, Maxwell model 
is significant because it predicts the relaxation time effects. Ramesh and Gireesha (2014) reported 
on heat source/sink effects and nano-particles in a stretching surface of a Maxwell fluid in 
convective boundary conditions. The study concluded that the local Nusselt number is lower while 
local Sherwood number is more for Maxwell fluids compared to Newtonian fluids. Heat transfer 
and flow of Maxwell fluid in the presence of thermal conductivity and variable viscosity over a sheet 
that is exponentially stretched was considered by Singh and Shweta (2013). They solved the 
momentum and energy equations numerically using an implicit finite-difference scheme and 
reported that skin friction and heat transfer coefficients are lower for the Maxwell fluid of constant 
viscosity and thermal conductivity. Riaz and Shabbir (2016) investigated generalized Maxwell fluid 
flow with new exact solutions. Khan et al. (2017) examined Maxwell fluid in a vertically oscillating 
plate in the presence of heat transfer. Fractional Caputo-Fabrizio derivatives was used for the 
analysis. Noor et al. (2016) analysed influence of heat flux on maxwell fluid in vertically stretched 
permeable medium plate subject to heat absorption. Their model equations were solved using 
shooting RK4 method and validated with homotopy-pade solutions. The presence of viscous and 

mailto:dadamsa@gmail.com
mailto:onwubuoyacletus@yahoo,%20com
mailto:onwubuoyacletus@yahoo,%20com
mailto:agunbiade1971@gmail.com


Journal of Science, Technology, Mathematics and Education (JOSTMED), 15(1), March, 2019 
 

139 
 

Joule heating dissipation effects which happened to be a part of the motivation for this study are 
absent in the above Maxwell fluid models 
 
The practical importance of heat generation/absorption, mass transfer and thermal radiation on an 
accelerating surface is applicable in physical problems such as fluids undergoing exothermic or 
endothermic chemical reactions. Hence, Chamkha (2000) presented the join effects of buoyancy 
and thermal radiation on hydromagnetic fluid flow in an accelerating porous surface with sink or 
heat source. Daniel and Daniel (2015) studied impacts of thermal radiation and bouyancy on MHD 
fluid flow over a permeable stretching sheet. Homotopy analysis method was applied for the 
simplification of the problem. Rashidi et al. (2014) explored influence of mass and heat transfer in 
MHD convective flow over a porous stretching sheet with buoyancy and thermal radiation effects. 
Their computational analysis is done using the homotopy analysis method. Nearly all of the above 
mentioned investigations are Newtonian types of fluid flow over an accelerating permeable 
surface. It is hereby of paramount interest of this present study to consider a non-Newtonian 
maxwell type of flow in the presence of magnetic field, thermal radiation, viscous and Joule 
heating effect over an accelerating porous surface. 
 
Viscous dissipation in heat transfer plays a significant role in energy source. Viscous dissipation has 
effects on both the temperature of the fluid flow and heat transfer rates. Alao et al. (2016) 
considered the effects of diffusion-thermo, thermal-diffusion and thermal radiation on an unsteady 
mass and heat transfer fluid flow with viscous dissipation and chemical reaction through a vertical 
semi-infinite plate. Spectral relaxation method was used in solving their model equations. Their 
results showed that an increase in Eckert number speedup the temperature and velocity profiles of 
the fluid flow. Fagbade et al. (2015) examined impact of viscous dissipation, magnetic field and 
thermophoresis on mixed convection saturated Darcy-Forcheimer fluid flow in a permeable 
medium. SHAM was used in the computation. They found out that magnetic field can be used to 
control heat and mass transfer flow characteristics. The investigations discussed above are 
Newtonian types of fluid in the presence of viscous dissipation. The present study extended the 
Newtonian model of Daniel and Daniel (2015) to non-Newtonian fluid in order to investigate 
combined effects of magnetic field, radiation, viscous and Joule heating dissipation on MHD free 
convective flow of Maxwell fluid over an accelerating permeable surface. 

 
Equations of Motion 
A steady two-dimensional boundary layer flow of a viscous incompressible maxwell fluid along a 
permeable accelerating surface is considered. The physical configuration of the coordinate system 
(𝑥, 𝑦) are shown in figure 1. A magnetic field of uniform strength 𝛽0 is applied in the direction of 

y-axis. The surface is considered to be permeable and accelerating to allow wall suction/injection 
with electrically conducting fluid. Magnetic Reynold number is assumed small, such that, the 
induced magnetic field is negligible. A modified form of the governing equations  (Daniel and 
Daniel, 2015)are;  
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subject to the conditions  

 𝑢 = 𝑈𝑤(𝑥) = 𝑎𝑥; 𝑣 = 𝑣0; 𝜗 = 𝜗𝑤 = 𝜗∞ + 𝐴0𝑥 𝑎𝑡  𝑦 = 0 (4) 
 

 𝑢 → 0, 𝜗 → 𝜗∞, as  𝑦 = ∞ (5) 

where u and v are the velocity components in 𝑥 and 𝑦 direction respectively, 𝜈 is the kinematic 

viscosity, 𝑔 is the acceleration due to gravity, 𝛽 is the thermal expansion coefficient, 𝜗 is the 

temperature of the fluid, 𝜗∞ is the free stream temperature, 𝜎 is the electric conductivity, 𝜌 is 

the fluid density, 𝛽0 is the magnetic field strength, 𝜆 is the relaxation time, 𝛼 is the thermal 
conductivity, 𝑐𝑝 is the specific heat at constant pressure, 𝜇 is the dynamic viscosity, 𝑄0 is the 

heat generation or absorption, 𝑞𝑟 is the radiative heat flux, 𝑎 is the stretching rate (constant), 𝑣0 

is the wall suction velocity when 𝑣0 > 0  or injection when 𝑣0 < 0  and 𝜗𝑤  is the wall 
temperature.  

 
Figure 1: Physical Configuration of the Model 

 

Using the Rosseland approximation for the radiative heat flux 𝑞𝑟 and the similarity transformation  

 𝜂 = √
𝑎

𝜈
𝑦, 𝜓(𝑥, 𝑦) = √𝑎𝜈𝑥𝑓(𝜂), 𝜃 =
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 (6) 

 and  
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as properties of the stream function 𝜓, the governing equations (2) and (3) are transformed to  
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𝛽∗𝑥

𝜌𝑐𝑝
 is the internal heat generation/absorption coefficient parameter, 𝛼0 =

𝜈𝑤

(𝑎𝜈)
1
2

 is the suction or 

injection. The physical quantities of engineering interest are the local skin friction (𝐶𝑓) and 

Nusselt number (𝑁𝑢) respectively defined as:  

 𝐶𝑓 =
𝜏𝑤

𝜂0(√
𝑎

𝜈
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 (11) 
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𝛼𝑎(𝜗𝑤−𝜗∞)
 (12) 

With reference to the Maxwell fluid, radiative transfer equation and the Rosseland approximation, 
we have the wall shear stress (𝜏𝑤) and the rate of heat transfer (𝑞𝑤) written as:  
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Using (6), equations (11) and (12) become  
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1

2 is the local Reynolds number and it defined as 𝑅𝑒𝑥

1

2 =
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The Skin friction and the Nusselt number are useful from an engineering point of view due to the 
fact that frictional drag exerted and the rate of heat transfer on the surface affect the fluid flow. 

 
Spectral homotopy analysis method (SHAM) 
SHAM is the numerical version of the well known Homotopy Analysis Method (HAM). It combines 
the Chebyshev spectral collocation method with HAM in solving ordinary differential equations 
(Trefethen, 2000). The interval [0,∞) with open upper limit is transformed into the region [-1,1] by 
applying the domain truncation method applicable to the boundary value problem and solve within 

the region [0, L] in place of [0, ∞), where L is the scaling parameter. Also, the boundary 
conditions of the governing equations are make homogeneous by introducing the following 
transformations  

 𝜁 =
2𝜂

𝐿
− 1,      𝜁 ∈ [−1,1] (16) 

 𝑓(𝜂) = 𝑓(𝜁) + 𝑓0(𝜂) (17) 

 𝜃(𝜂) = 𝜃(𝜁) + 𝜃0(𝜂) (18) 

where 𝑓0(𝜂) and 𝜃0(𝜂) are the initial approximations that are chosen to satisfy the governing 

boundary conditions. Substituting (17) and (18) into (7) and (8), we have  
𝑓′′′(𝜁) + 𝑓(𝜁)𝑓′′(𝜁) + 𝑎1𝑓(𝜁) + 𝑎2𝑓′′(𝜁) − 𝑓′(𝜁)𝑓′(𝜁) + 𝑎3𝑓′(𝜁) + 𝐺𝑟𝜃(𝜁) − 𝑀𝑔𝑓′(𝜁) − (19) 

 
𝛽𝑓(𝜁)𝑓(𝜁)𝑓′′′(𝜁) + 𝑎4𝑓(𝜁)𝑓(𝜁) + 𝑎5𝑓(𝜁)𝑓′′′(𝜁) + 𝑎6𝑓(𝜁) + 𝑎7𝑓′′′(𝜁) + 2𝛽𝑓′(𝜁)𝑓(𝜁)𝑓′′′(𝜁) 

 
+𝑎8𝑓′(𝜁)𝑓(𝜁) + 𝑎9𝑓′(𝜁)𝑓′′′(𝜁) + 𝑎10𝑓′(𝜁) + 𝑎11𝑓(𝜁)𝑓′′′(𝜁) + 𝑎12𝑓(𝜁) + 𝑎13𝑓′′′(𝜁) = 𝐻1(𝜂) 

 

 (
1+𝑅𝑝

𝑃𝑟
) 𝜃′′(𝜁) + 𝑓(𝜁)𝜃′(𝜁) + 𝑏1𝑓(𝜁) + 𝑏2𝜃′(𝜁) − 𝜃(𝜁)𝑓′(𝜁) + 𝑏3𝜃(𝜁) + 𝑏4𝑓′(𝜁) + (20) 

 
 𝐸0𝑓′′(𝜁)𝑓′′(𝜁) + 𝑏5𝑓′′(𝜁) + 𝐸0𝑀𝑔𝑓′(𝜁)𝑓′(𝜁) + 
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 𝑏6𝑓′(𝜁) + 𝛾𝜃(𝜁) + 𝑏8𝜃(𝜁) − 𝑄𝑓′(𝜁)𝜃(𝜁) + 𝑏7𝑓′(𝜁) = 𝐻2(𝜂) 
subject to:  

 𝑓(−1) = 𝑓′(−1) = 𝑓′(1) = 0,    𝜃(−1) = 𝜃(1) = 0 (21) 

where the primes in the equations above denoted differentiation with respect to 𝜁 and setting  
𝑎1 = 𝑓′′0(𝜂), 𝑎2 = 𝑓0(𝜂), 𝑎3 = −2𝑓′0(𝜂), 𝑎4 = −𝛽𝑓′′′0, 𝑎5 = −2𝛽𝑓0(𝜂), 𝑎6 = −2𝛽𝑓0(𝜂), 

 
 𝑎7 = −𝛽𝑓0

2(𝜂), 𝑎8 = 2𝛽𝑓′′′0(𝜂), 𝑎9 = 2𝛽𝑓0(𝜂), 𝑎10 = 2𝛽𝑓0(𝜂),   

 
 𝑎11 = 2𝛽𝑓′0(𝜂), 𝑎12 = 2𝛽𝑓′0(𝜂)𝑓′′′0(𝜂), 𝑎13 = 2𝛽𝑓′0(𝜂)𝑓0(𝜂) 

 
𝐻1(𝜂) = −𝑓′′′0(𝜂) − 𝑓0(𝜂)𝑓′′0(𝜂) + 𝑓′0(𝜂)𝑓′0(𝜂) − 𝐺𝑟𝜃0(𝜂) + 𝑀𝑔𝑓′0(𝜂) + 𝛽𝑓0

2(𝜂)𝑓′′′0(𝜂) 

 
 −2𝛽𝑓′0(𝜂)𝑓0(𝜂)𝑓′′′0(𝜂) 

 
 𝑏1 = 𝜃′0(𝜂), 𝑏2 = 𝑓0(𝜂), 𝑏3 = −𝑓′0(𝜂), 𝑏4 = −𝜃0(𝜂), 𝑏5 = 2𝐸0𝑓′′0(𝜂),   

 
 𝑏6 = 2𝐸0𝑀𝑔𝑓′0(𝜂), 𝑏7 = −𝑄𝜃0(𝜂), 𝑏8 = −𝑄𝑓′0(𝜂) 

 

 𝐻2(𝜂) = − (
1+𝑅𝑝

𝑃𝑟
) 𝜃′′0(𝜂) − 𝑓0(𝜂)𝜃′0(𝜂) + 𝜃0(𝜂)𝑓′0(𝜂) − 𝑓′′0

2(𝜂) − 𝐸0𝑀𝑔𝑓′0
2(𝜂) − 

 
 𝛾𝜃0(𝜂) + 𝑄𝑓′0(𝜂)𝜃0(𝜂) 

From (19) and (20), the non-homogeneous linear part is given by  
𝑓′′′𝑙 + 𝑎1𝑓𝑙 + 𝑎2𝑓′′𝑙 + 𝑎3𝑓′𝑙 + 𝐺𝑟𝜃𝑙 − 𝑀𝑔𝑓′𝑙 + 𝑎6𝑓𝑙 + 𝑎7𝑓′′′𝑙 + 𝑎10𝑓′𝑙 + 𝑎12𝑓𝑙 + 𝑎13𝑓′′′𝑙 =

𝐻1(𝜂) (22) 

(
1+𝑅𝑝

𝑃𝑟
) 𝜃′′𝑙 + 𝑏1𝑓𝑙 + 𝑏2𝜃′𝑙 + 𝑏3𝜃𝑙 + 𝑏4𝑓′𝑙 + 𝑏5𝑓′′𝑙 + 𝑏6𝑓′𝑙 + 𝛾𝜃𝑙 + 𝑏8𝜃𝑙 + 𝑏7𝑓′𝑙 = 𝐻2(𝜃) (23) 

 subject to  
 𝑓′𝑙(−1) = 𝑓′𝑙(1) = 0, 𝑓𝑙(−1) = 𝑓𝑙(1) = 0, 𝜃𝑙(−1) = 𝜃𝑙(1) = 0 (24) 

The next thing is to use the Chebyshev pseudospectral method to solve (22) and (23). 
Approximate the unknown functions 𝑓𝑙(𝜁)  and 𝜃𝑙(𝜁)  as a truncated series of Chebyshev 

polynomials of the form  
 𝑓𝑙(𝜁)¬𝑓𝑙

𝑁 = ∑𝑁
𝑘=0 𝑓𝑘

𝑁𝜗1𝑘(𝜁𝐽),    𝐽 = 0,1,2, . . . , 𝑁 (25) 

 𝜃𝑙(𝜁)¬𝜃𝑙
𝑁 = ∑𝑁

𝑘=0 𝜃𝑘
𝑁𝜗2𝑘(𝜁𝐽),    𝐽 = 0,1,2, . . . , 𝑁 (26) 

where 𝑘𝑡ℎ Chebyshev polynomials are 𝜗1𝑘 and 𝜗2𝑘 with the associated coefficients 𝑓𝑘, 𝜃𝑘 and 

𝜁0, 𝜁1, 𝜁2, . . . , 𝜁𝑁 are Gauss-Lobatto collocation point defined by  

 𝜁𝐽 = cos(
𝜋𝐽

𝑁
)      𝐽 = 0,1,2, . . . , 𝑁 (27) 

 In (27), N is the number of collocation points. At this collocation points, the derivatives of the 
function 𝑓𝑙(𝜁), 𝜃𝑙(𝜁) are presented as;  

 
𝑑𝑟𝑓𝑙

𝑑𝜁𝑟 = ∑𝑁
𝑘=0 𝐷𝑘𝐽

𝑟 𝑓𝑙(𝜁𝐽),      
𝑑𝑟𝜃𝑙

𝑑𝜁𝑟 = ∑𝑁
𝑘=0 𝐷𝑘𝐽

𝑟 𝜃𝑙(𝜁𝐽) (28) 

where 𝑟  is the order of differentiation and 𝐷 =
2

𝐿
D and 𝐷  is the Chebyshev spectral 

differentiation matrix. Applying (25)-(28) into (22) and (23), we obtain  
 𝐴𝐹𝐿 = 𝐺 (29) 

subject to the boundary conditions 
𝑓𝑙(𝜁𝑁) = −𝛼0 ,    ∑𝑁

𝑘=0 𝐷𝑁𝑘𝑓𝑘(𝜁𝑘) = 1, ∑𝑁
𝑘=0 𝐷0𝑘𝑓𝑘(𝜁𝑘) = 0,    𝜃𝑙(𝜁𝑁) = 1,   𝜃𝑙(𝜁0) = 0, (30) 

 where 
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 𝐴 = [
𝐴11𝐴12

𝐴12𝐴22
] 

and 
 
𝐴11 = 𝐷3 + 𝑎1 + 𝑎2𝐷2 + 𝑎3𝐷 − 𝑀𝑔𝐷 + 𝑎6 + 𝑎7𝐷3 + 𝑎10𝐷 + 𝑎12𝐷 + 𝑎13𝐷3, 𝐴12 = 𝐺𝑟𝐼, 

 

 𝐴21 = 𝑏1 + 𝑏4𝐷 + 𝑏5𝐷2 + 𝑏6𝐷 + 𝑏7𝐷, 𝐴22 = (
1+𝑅𝑝

𝑃𝑟
) 𝐷2 + 𝑏2𝐷 + 𝑏3 + 𝛾 + 𝑏8𝐼 

 
 𝐹𝑙 = [𝑓𝑙(𝜁0), . . . , 𝑓𝑙(𝜁𝑁), 𝜃𝑙(𝜁0), . . . , 𝜃𝑙(𝜁𝑁)], 𝐺 = [𝐻𝑙(𝜂0), . . . , 𝐻𝑙(𝜂𝑁), 𝐻2(𝜂0), . . . , 𝐻2(𝜂𝑁)] 

 
 𝑎𝑖 = 𝑑𝑖𝑎𝑔([𝑎𝑖(𝜂0), . . . , 𝑎𝑖(𝜂𝑁−1), 𝑎𝑖(𝜂𝑁−1, 𝑎𝑖(𝜂𝑁]), ; 

 
 𝑏𝑖 = 𝑑𝑖𝑎𝑔([𝑏𝑖(𝜂0), . . . , 𝑏𝑖(𝜂𝑁−1), 𝑏𝑖(𝜂𝑁−1, 𝑏𝑖(𝜂𝑁])    𝑖 = 1,2,3 

In other to implement the boundary conditions (30), the first and the last rows of A are deleted. 
The boundary conditions are then imposed on the modified matrix A. Now setting the modified 
matrix G to zero of 𝑓𝑙(𝜁0), . . . , 𝑓𝑙(𝜁𝑁), 𝜃𝑙(𝜁0), . . . , 𝜃𝑙(𝜁𝑁) are determined from  

 𝐹𝑙 = 𝐴−1𝐺, 𝐴 ≠ 0 (31) 
Equation (31) with the initial approximation are the SHAM solution of the governing equations. The 
following linear operators are defined in order to seek for the convergent series of SHAM 
approximation solutions of (19) and (20)  

 𝐿𝑓[𝑓̅(𝜂, 𝑞), �̅�(𝜂, 𝑞)] = 𝑓′′′𝑙 + 𝑎1𝑓𝑙 + 𝑎2𝑓′′𝑙 + 𝑎3𝑓′𝑙 + 𝐺𝑟𝜃𝑙 − 𝑀𝑔𝑓′𝑙 + 𝑎6𝑓𝑙 +

𝑎7𝑓′′′𝑙 + 𝑎10𝑓′𝑙 + 𝑎12𝑓𝑙 + 𝑎13𝑓′′′𝑙 (32) 

𝐿𝜃[𝑓̅(𝜂, 𝑞), �̅�(𝜂, 𝑞)] = (
1+𝑅𝑝

𝑃𝑟
) 𝜃′′𝑙 + 𝑏1𝑓𝑙 + 𝑏2𝜃′𝑙 + 𝑏3𝜃𝑙 + 𝑏4𝑓′𝑙 + 𝑏5𝑓′′𝑙 + 𝑏6𝑓′𝑙 + 𝛾𝜃𝑙 (33) 

where 𝑞 ∈ [0,1] is the embedding parameter and 𝑓̅(𝜂, 𝑞), �̅�(𝜂, 𝑞) are the unknown functions. We 

have the zeroth order deformation equation given by:  

 (1 − 𝑞)𝐿𝑓[𝑓̅(𝜂; 𝑞) − 𝑓𝑙(𝜉)] = 𝑞ℏ𝑓𝑁𝑓[𝑓̅(𝜂; 𝑞), �̅�(𝜂, 𝑞)] − 𝐻1(𝜂), (34) 

 (1 − 𝑞)𝐿𝜃[�̅�(𝜂; 𝑞) − 𝜃𝑙(𝜉)] = 𝑞ℏ𝜃𝑁𝜃[𝑓̅(𝜂; 𝑞), �̅�(𝜂, 𝑞)] − 𝐻2(𝜂) (35) 
where ℏ𝑓 , ℏ𝜃 are nonzero convergence controlling auxiliary parameter, 𝑁𝑓̅ and 𝑁�̅� are nonlinear 

operations given by:  

 𝑁𝑓[𝑓̅(𝜂, 𝑞), �̅�(𝜂, 𝑞)] = 𝑓𝑓′′ − 𝑓′
2 − 𝛽𝑓2𝑓′′′ + 𝑎4𝑓2 + 𝑎5𝑓𝑓′′′ + 2𝛽𝑓′𝑓𝑓′′′ + 𝑎8𝑓′𝑓 +

𝑎9𝑓′𝑓′′′ + 𝑎11𝑓𝑓′′′ (36) 

 𝑁𝜃[𝑓̅(𝜂, 𝑞), �̅�(𝜂, 𝑞)] = 𝑓𝜃′ − 𝜃𝑓′ + 𝐸0𝑓′′
2 + 𝐸0𝑀𝑔𝑓′

2
 (37) 

 Equations (34) and (35) are differentiated 𝑚 −times with respect to 𝑞 and making 𝑞 to be 

equals zero, the 𝑚𝑡ℎ order deformation equations becomes  

 𝐿𝑓[𝑓𝑚(𝜉) − 𝜒𝑚𝑓𝑚−1(𝜉)] = ℏ𝑓𝑅𝑚
𝑓

, (38) 

 𝐿𝜃[𝜃𝑚(𝜉) − 𝜒𝑚𝜃𝑚−1(𝜉)] = ℏ𝜃𝑅𝑚
𝜃  (39) 

 subject to  
 𝑓𝑚(−1) = 𝑓′𝑚(−1) = 𝑓′𝑚(1) = 0, (40) 

 𝜃𝑚(−1) = 𝜃𝑚(1) = 0. (41) 

 where  

 𝑅𝑚
𝑓

(𝜉) = 𝑓′′′𝑚−1 + 𝑎1𝑓𝑚−1 + 𝑎2𝑓′′𝑚−1 + 𝑎3𝑓′𝑚−1 + 𝐺𝑟𝜃𝑚−1 − 𝑀𝑔𝑓′𝑚−1 + 𝑎6𝑓𝑚−1 +

𝑎7𝑓′′′𝑚−1 + 𝑎10𝑓′𝑚−1 + 𝑎12𝑓𝑚−1 + 

 
 𝑎13𝑓′′′𝑚−1 + ∑𝑚−1

𝑛=0 (𝑓𝑛𝑓𝑚−1−𝑛 − 𝑓′𝑛𝑓′𝑚−1−𝑛 − 𝛽𝑓𝑛
2𝑓′′′𝑚−1−𝑛 + 𝑎4𝑓𝑛𝑓𝑚−1−𝑛 +

𝑎5𝑓𝑛𝑓′′′𝑚−1−𝑛 + 
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𝑎8𝑓′𝑛𝑓𝑚−1−𝑛 + 𝑎9𝑓′𝑛𝑓′′′𝑚−1−𝑛) + ∑𝑛
𝑖=0 ∑𝑚−1

𝑛=0 (2𝛽𝑓𝑖𝑓′𝑛−𝑖𝑓′′′𝑚−1−𝑛) − 𝐻1(𝜂)(1 − 𝜒𝑚) (42) 

 

𝑅𝑚
𝜃 (𝜉) = (

1+𝑅𝑝

𝑃𝑟
) 𝜃′′𝑚−1 + 𝑏1𝑓𝑚−1 + 𝑏2𝜃′𝑚−1 + 𝑏3𝜃𝑚−1 + 𝑏4𝑓′𝑚−1 + 𝑏5𝑓′′𝑚−1 + 𝑏6𝑓′𝑚−1 +

𝛾𝜃𝑚−1 + 𝑏7𝑓′𝑚 − +𝑏8𝜃𝑚−1 ∑𝑚−1
𝑛=0 (𝑓𝑛𝜃′𝑚−1−𝑛 − 𝜃𝑛𝑓′𝑚−1−𝑛 + 𝐸0𝑓′′𝑛𝑓′′𝑚−1−𝑛 +

𝐸0𝑀𝑔𝑓′𝑛𝑓′𝑚−1−𝑛) − 𝐻2(𝜂)(1 − 𝜒𝑚) (43) 

 Upon the application of Chebyshev pseudo-spectral transformation on (38)-(43) gives  
 𝐴𝑓𝑚 = (𝜒𝑚 + ℏ)𝐴𝑓𝑚−1 − ℏ(1 − 𝜒𝑚)𝐺 + ℏ𝑄𝑚−1 (44) 

 subject to the following boundary conditions  
 𝑓𝑚(𝜉𝑁) = 0,    𝑓𝑚(𝜉0) = 0, (45) 

 𝜃𝑚(𝜉𝑁) = 0,    , 𝜃𝑚(𝜉0) = 0. (46) 

 where 𝐹𝑚 = [𝑓𝑚(𝜉0), 𝑓𝑚(𝜉1), . . . , 𝑓𝑚(𝜉𝑁), 𝜃𝑚(𝜉0), 𝜃𝑚(𝜉1), . . . , 𝜃𝑚(𝜉𝑁)]𝑇 and  
 𝑄1,𝑚−1 = ∑𝑚−1

𝑛=0 (𝑓𝑛)(𝑓𝑚−1−𝑛) − (𝐷𝑓𝑛)(𝐷𝑓𝑚−1−𝑛) + (𝑎4𝑓𝑛) + (𝑎5𝑓𝑛)(𝐷3𝑓𝑚−1−𝑛) +
(𝑎5𝐷𝑓𝑛)(𝑓𝑚−1−𝑛) 
 

 +(𝑎9𝐷𝑓𝑛)(𝐷3𝑓𝑚−1−𝑛) + ∑𝑛
𝑖=0 ∑𝑚−1

𝑛=0 [(2𝛽𝑓𝑖𝐷𝑓𝑛−𝑖)(𝐷3𝑓𝑚−1−𝑛) − (𝛽𝑓𝑖𝑓𝑛−𝑖)(𝐷3𝑓𝑚−1−𝑛)] (47) 

 
 𝑄2,𝑚−1 = ∑𝑚−1

𝑛=0 [(𝑓𝑛)(𝐷𝜃𝑚−1−𝑛) − (𝜃𝑛)(𝐷𝑓𝑚−1−𝑛) + (𝐸0𝐷2𝑓𝑛)(𝐷2𝑓𝑚−1−𝑛) +

(𝐸0𝑀𝑔𝐷𝑓𝑛)(𝐷𝑓𝑚−1−𝑛)] (48) 

 Using (44), the following recursive formula are obtained for 𝑚 ≥ 1 
 𝐹𝑚 = (𝜒𝑚 + ℏ)𝐴−1. �̅�𝑓𝑚−1 + ℏ𝐴−1[𝑄𝑚−1 − (1 + 𝜒𝑚)𝐺], (49) 

 Θ𝑚 = (𝜒𝑚 + ℏ)𝐴−1. �̅�𝜃𝑚−1 + ℏ𝐴−1[𝑄𝑚−1 − (1 + 𝜒𝑚)𝐺] (50) 

The initial approximation can be obtained from (31). Starting from this initial approximation, 
higher order approximations 𝐹𝑚(𝜉) and Θ𝑚(𝜉) from 𝑚 ≥ 1 can be obtained from (49) and (50). 

 
Result and Discussions 
Equations (7) and (8) subject to (9) and (10) has been solved numerically using SHAM with their 
governing parameters: Grashof number (𝐺𝑟), magnetic parameter (𝑀𝑔), Deborah number (𝛽), 
radiation parameter (𝑅𝑝), Prandtl number 𝑃𝑟, Eckert number (𝐸0), heat source/sink (𝛾) and 

suction velocity (𝛼0). SHAM combines the idea of Chebyshev pseudo-spectral method with HAM. 

For the numerical analysis, the following values are used for the controlling parameters: 𝑃𝑟 =
0.71, 𝐺𝑟 = 2.0, 𝑀𝑔 = 0.5, 𝛽 = 0.01, 𝑅𝑝 = 0.5, 𝐸0 = 0.01, 𝛾 = 0.1, 𝛼0 = −0.5 . Hence, in all our 

computations we utilized the above values unless otherwise stated.  
 

 

       Figure  2: Effect of 𝐸0 on the velocity and temperature profiles 
 



Journal of Science, Technology, Mathematics and Education (JOSTMED), 15(1), March, 2019 
 

145 
 

Figure 2 illustrates the effects of Eckert number on the velocity and temperature profiles. Viscous 
dissipation influences both the temperature and heat transfer rates. It is expected that the Eckert 
number hike the velocity and temperature profiles as a result of greater viscous dissipative heat. 
The presence of Joule heating dissipation reduces the viscous dissipative heat and thereby result 
to a fall in both the velocity and temperature profiles as shown in Figure 2. 
 

  
Figure 3: Effect of 𝛽 on the velocity and temperature profiles 

 
Figure 3 depicts the effect of the Deborah number on the velocity and temperature profiles. It is 
observed that as the Deborah number increases, the velocity increases near the boundary layer 
while the temperature profile slightly decreases. This implies that the Deborah number has the 
tendency of increasing the boundary layer thickness.  
 
 

       Figure  4: Effect of 𝑴𝒈 on the velocity and temperature profiles 

 
The effect of magnetic parameter 𝑀𝑔 on the velocity and temperature profiles is displayed in 

Figure 4. A noticeable decrease near the boundary layer in the velocity profile and increase in the 
temperature profile is observed with a rise in magnetic parameter. The application of transversely 
magnetic field to the flow invokes lorentz force thereby producing an opposition to the flow of the 
the fluid and enhancement of the temperature profile. 
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Figure 5: Effect of 𝐺𝑟 on the velocity and temperature profiles 

 
The effect of the Grashof number (𝐺𝑟) on the velocity and temperature profiles is illustrated in 

Figure 5. 𝐺𝑟 is a dimensionless number which estimates the ratio of the buoyancy to viscous force 
acting on a fluid. It is noticed that increasing the Grashof number add more thermal energy into 
the fluid molecules and loosen up intermolecular forces within the fluid particles.Thus, it increases 
the velocity profile as shown in Figure 5. Also, increasing the Grashof number the fluid particle 
gathered more momentum and lost additional heat to the surrounding, thus decreases the 
temperature profile as depicted in Figure 5. 

 
Figure 6: Effect of 𝑃𝑟 on the velocity and temperature profiles 

 
Figure 6 displays the effect of Prandtl number on the flow profile. The Prandtl number 
approximates the ratio of the momentum diffusion to thermal diffusion. From Figure 6, as the 
Prandtl number increases, the velocity as well as the temperature profile decreases. This is 
because increasing the Prandtl number decreases the thermal diffusion and makes the thermal 
boundary layer to become thinner. On the hand, fluids with higher Prandtl number possesses more 
viscosities. 
 
In other to show the correctness of the code used in the present study, we compare the computed 
results with Daniel and Daniel (2015) and Chamkha (2000) in the absence of parameters such as 
Deborah number, thermal radiation and viscous dissipation in Table 1. Our model is the general 

form of Daniel and Daniel (2015) when pertinent parameters 𝛽 = 𝐸0 = 0. The result shown in 
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table 1 indicates that the present results with SHAM is in good agreement with the results of Daniel 
and Daniel (2015) and Chamkha (2000). Table 2 illustrates the influence of Deborah number (𝛽) 
and Eckert number (𝐸0) on the skin friction coefficient and Nusselt number respectively when 

𝑃𝑟 = 0.71, 𝐺𝑟 = 2.0, 𝑀𝑔 = 0.5, 𝛽 = 0.01, 𝑅𝑝 = 0.5, 𝛾 = 0.1, 𝛼0 = −0.5, ℎ𝑓 = ℎ𝜃 = ℎ𝜙 = −0.5 . It is 

observed that a hike in both Deborah and Eckert number gives rise to both skin friction and Nusselt 
number.  
 
Table 1: Comparison of computational values of wall temperature gradient            
         (−𝜃′(0)) with Daniel and Daniel (2015) and Chamkha (2000) 
 β0= 0.45 

Q = 0.5 
β0= 0.45 
Q = 1.0 

β0= 0 
Q = 0.5 

β0= 0 
Q = 1.0 

β0= −1.5 
Q = 0.5 

β0= −1.5 
Q = 1.0 

SHAM 0.82348 0.96193 0.94777 1.07896 1.57088 1.66192 
HAM 0.82396 0.96190 0.94765 1.07895 1.57077 1.66182 

Implicit FDM 0.82397 0.96191 0.94769 1.07996 1.57077 1.66184 

 
 

Table 2: Numerical values of the local skin friction and local Nusselt number for 
different values of Deborah number (𝛽) and Eckert number (𝐸0) 

β E0 −f jj(0) −θj(0) 
0.0 0.2 0.88530 0.89896 

 0.4 0.91423 0.94909 
 0.6 0.94067 0.99697 

0.5 0.2 0.88354 0.89894 
 0.4 0.91252 0.94907 
 0.6 0.93900 0.99693 

 
Conclusion 
In this paper, we have employed the discrete version of HAM namely SHAM in solving the 
transformed (11) and (12) subject to (13). The procedure on how to apply the SHAM is discussed 
extensively in section 3. Numerical simulations were done and it is found that increasing the 
magnetic parameter (𝑀𝑔) decreases the velocity profile and increases the temperature profile 

which accounts for the presence of a drag force known as Lorentz force that opposes the fluid 
transport. A hike in the Deborah number increases the velocity near the boundary but decreases 
the temperature profile. Also, arise in the Prandtl number leads to a decrease in both the velocity 
and temperature profiles respectively. From the heated surface, at higher Prandtl, heat diffuses 
away more rapidly. These results are applicable in controlling cooling rate, for instance, in engine 
coolant production.  
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