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Abstract 
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results obtained confirm the accuracy of the method. 
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Introduction 
Adomian decomposition method (ADM), which is one of the most reliable semi–analytic 
methods, was introduced by Adomian (1994). This method prides itself as a viable tool that 
handles both linear and nonlinear ordinary and partial differential equations. Its application 
transcends the solution of differential equations, as it has been effectively applied to linear 
and nonlinear integral as well as integro – differential equations all kinds and types 
(Wazwaz,2011). The so–called modified Adomian decomposition method (which is applicable 
only when the inhomogeneous source term has more than one term)was later reported to 
simplify matters, especially when there are ‘noise’ terms in the solution (Adomian, 1994; 
Wazwaz, 2011). 
 
The only difficulty encounters in the course of using ADM is in the generation of the 
Adomian polynomials, especially for certain difficult nonlinearities (Hermann and Saravi, 
2016). Despite the availability of a robust general formula presented by Adomian (1994) for 
the generation of the polynomials, researchers still encounter some difficulties in that 
direction. Duan (2015) presented an extension of ADM to boundary value problems, and 
most importantly, an algorithm for implementation in Mathematical for the generation of 
Adomian polynomials. Hermann and Saravi (2016), Yisa and Issa (2018), and a host of other 
scientists used ADM to solve generalized Emden–Lane–Fowler equation. The peculiarity in 
the equation is the singularity that exists in its first order term which hinders solving the 
problem by many known analytical methods. Relativity in performances of variational 
iteration method (VIM) and ADM were investigated by Yisa (2018), where the two methods 
were observed to be efficient. 
 
The convergence of any numerical scheme to be used in solving any problem is of central 
consideration. To that end, Abbaoui and Cherruault (1994) established the general 
convergence for ADM, while Abdelrazec and Pelinovsky (2011) worked on the convergence 
of the method basically for IVPs. 
 
In the present work, attention is given to the modalities of generating the Adomian 
polynomials for some selected nonlinearities of varying degrees of difficulties. The 
polynomials thus generated are implemented in the solutions of some nonlinear initial value 
problems (IVPs). 
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The Adomian Polynomials 
Adomian (1994) gave a general formula for generating the so – called Adomian polynomials 
as  

𝐴𝑛 =
1

𝑛!

𝜕𝑛

𝜕𝜆𝑛 [𝑁 (∑ 𝜆𝑗𝑦𝑗

𝑛

𝑗=0

)] 𝜆 = 0,                                                               𝑛 = 0,1,2, …              (2.1) 

An elegant variation of (2.1) was present in Hermann and Saravi (2016). The derivation of 
Adomian polynomials through the implementation of (2.1) is presented in section below. It 
must be noted too, that when 𝑛 = 0, the partial derivative is not implemented, that is 
𝐴0 = 𝑁(𝑦0). 
 
Generation of Adomian Polynomial for Certain Nonlinearities 
In this section, Adomian polynomials are derived for the types of nonlinearities that are 
conceived in the present work. 
 

Nonlinearity of the Form 𝑵(𝒚) = 𝒚(𝒙)𝒚′(𝒙) 
Consider the nonlinearity 

𝑁(𝑦) = 𝑦(𝑥)𝑦′(𝑥)(3.1) 
The Adomian polynomials are derived as follows:  

𝐴0 = 𝑁(𝑦0) = 𝑦0𝑦′0 

For 𝑛 = 1: 

𝐴1 =
1

1!

𝜕

𝜕𝜆
[𝑁 (∑ 𝜆𝑗𝑦𝑗

1

𝑗=0

)] 𝜆 = 0                                                                    

 

𝐴1 =
𝜕

𝜕𝜆
[𝑁(𝑦0 + 𝜆𝑦1)]𝜆=0 

This implies  
 

𝐴1 =
𝜕

𝜕𝜆
[(𝑦0 + 𝜆𝑦1)(𝑦0

′ + 𝜆𝑦1
′ )]𝜆=0 

Using product rule, we get 

𝐴1 = [(𝑦0 + 𝜆𝑦1)𝑦1
′ + (𝑦0

′ + 𝜆𝑦1
′ )𝑦1]𝜆=0 

𝐴1 = 𝑦0𝑦1
′ + 𝑦0

′ 𝑦1 

The next Adomian polynomial 𝐴2 is generated as follows: 

𝐴2 =
1

2!

𝜕2

𝜕𝜆2 [𝑁 (∑ 𝜆𝑗𝑦𝑗

2

𝑗=0

)] 𝜆 = 0                                                                            

𝐴2 =
𝜕2

𝜕𝜆2
[(𝑦0 + 𝜆𝑦1 + 𝜆2𝑦2)(𝑦0

′ + 𝜆𝑦1
′ + 𝜆2𝑦2

′ )]𝜆=0 

𝐴2 =
1

2

𝜕

𝜕𝜆
[(𝑦0 + 𝜆𝑦1 + 𝜆2𝑦2)(𝑦1

′ + 2𝜆𝑦2
′ ) + (𝑦1 + 2𝜆𝑦2)(𝑦0

′ + 𝜆𝑦1
′ + 𝜆2𝑦2

′ )]𝜆=0 

 

𝐴2 =
1

2
[(𝑦0 + 𝜆𝑦1 + 𝜆2𝑦2)(2𝑦2

′ ) + (𝑦1 + 2𝜆𝑦2)(𝑦1
′ + 2𝜆𝑦2

′ ) + (𝑦1 + 2𝜆𝑦2)(𝑦1
′ + 2𝜆𝑦2

′ )              

+ 2𝑦2(𝑦0
′ + 𝜆𝑦1

′ + 𝜆2𝑦2
′ )]𝜆=0, 

which gives 

𝐴2 =
1

2
[2𝑦2

′ 𝑦0 + 𝑦1𝑦1
′ + 𝑦1𝑦1

′ + 2𝑦2𝑦0
′ ]. 

Upon simplification, we get 

𝐴2 = 𝑦2
′ 𝑦0 + 𝑦1𝑦1

′ + 𝑦2𝑦0
′ .                                                                                                                       
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For 𝑛 = 3: 

𝐴3 =
1

3!

𝜕3

𝜕𝜆3 [𝑁 (∑ 𝜆𝑗𝑦𝑗

3

𝑗=0

)] 𝜆 = 0                                                                                                      

 

𝐴3 =
1

3!

𝜕3

𝜕𝜆3
𝑁[(𝑦0 + 𝜆𝑦1 + 𝜆2𝑦2 + 𝜆3𝑦3)]𝜆=0 

 

𝐴3 =
1

6

𝜕3

𝜕𝜆3
[(𝑦0 + 𝜆𝑦1 + 𝜆2𝑦2 + 𝜆3𝑦3)(𝑦0

′ + 𝜆𝑦1
′ + 𝜆2𝑦2

′ + 𝜆3𝑦3
′ )]𝜆=0 

Working through carefully and evaluating at 𝜆 = 0, we get 
 

𝐴3 =
1

6
[6𝑦3

′ 𝑦0 + 2𝑦1𝑦2
′ + 2𝑦1𝑦2

′ + 2𝑦2𝑦1
′ + 2𝑦1𝑦2

′ + 2𝑦2𝑦1
′ + 2𝑦2𝑦1

′ + 6𝑦3𝑦0
′ ], 

which eventually gives 

𝐴3 =  𝑦0𝑦3
′ + 𝑦1𝑦2

′ + 𝑦2𝑦1
′ + 𝑦0

′ 𝑦3.                                                                                                    
And so on. 
 

Nonlinearity of the Form 𝑵(𝒚) = 𝒚′(𝒙)𝟐 

Consider the nonlinearity 

𝑁(𝑦) = (𝑦′(𝑥))2 = (𝑦′)2                                                                                                         (3.2) 
Now using (1), we shall generate the corresponding Adomian polynomials as follows: 

For 𝑛 = 0: 

𝐴0 = 𝑁(𝑦0) = (𝑦0
′ )2 

 

For 𝑛 = 1: 

𝐴1 =
1

1!

𝜕

𝜕𝜆
[𝑁 (∑ 𝜆𝑗𝑦𝑗

1

𝑗=0

)] 𝜆 = 0                                                                                                                    

 

𝐴1 =
𝜕

𝜕𝜆
[𝑁(𝑦0 + 𝜆𝑦1)]𝜆=0 

 

𝐴1 = [
𝜕

𝜕𝜆
(𝑦0

′ + 𝜆𝑦1
′ )

2
]𝜆=0 

 

𝐴1 = [2(𝑦0
′ + 𝜆𝑦1

′ )𝑦1
′ ]𝜆=0, 

 
which finally gives 

𝐴1 = 2𝑦0
′ 𝑦1

′ .                                                                                                                                                          
 

For 𝑛 = 2: 

𝐴2 =
1

2!

𝜕2

𝜕𝜆2 [𝑁 (∑ 𝜆𝑗𝑦𝑗

2

𝑗=0

)] 𝜆 = 0                                                                                                               

 

𝐴2 =
1

2

𝜕2

𝜕𝜆2
𝑁[𝑦0 + 𝜆𝑦1 + 𝜆2𝑦2]𝜆=0 

 

𝐴2 =
1

2

𝜕2

𝜕𝜆2
[(𝑦0

′ + 𝜆𝑦1
′ + 𝜆2𝑦2

′ )
2

]𝜆=0 
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𝐴2 =
1

2

𝜕

𝜕𝜆
[2(𝑦0

′ + 𝜆𝑦1
′ + 𝜆2𝑦2

′ )(𝑦1
′ + 2𝜆𝑦2

′ )]𝜆=0 

 

𝐴2 = [(𝑦0
′ + 𝜆𝑦1

′ + 𝜆2𝑦2
′ )(2𝑦2

′ ) + (𝑦1
′ + 2𝜆𝑦2

′ )
2

]𝜆=0 

 
And this finally gives 
 

𝐴2 = 2𝑦2
′ 𝑦0

′ + (𝑦1
′ )2.                                                                                                                                          

 

For 𝑛 = 3: 
 

𝐴3 =
1

3!

𝜕3

𝜕𝜆3 [𝑁 (∑ 𝜆𝑗𝑦𝑗

3

𝑗=0

)] 𝜆 = 0                                                                                                               

 

𝐴3 =
1

3!

𝜕3

𝜕𝜆3
𝑁[(𝑦0 + 𝜆𝑦1 + 𝜆2𝑦2 + 𝜆3𝑦3)]𝜆=0 

 

𝐴3 =
1

6

𝜕3

𝜕𝜆3
[(𝑦0

′ + 𝜆𝑦1
′ + 𝜆2𝑦2

′ + 𝜆3𝑦3
′ )

2
]𝜆=0 

Differentiating and evaluating at 𝜆 = 0, we get 

𝐴3 = 2𝑦0
′ 𝑦3

′ + 2𝑦1
′ 𝑦2

′ .                                                                                                                                         
 

Nonlinearity of the Form 𝑵(𝒚) = 𝒚′′(𝒙)𝟐 

Consider the nonlinearity 

𝑁(𝑦) = 𝑦′′(𝑥)2 = (𝑦′′)2                                                                                                                       (3.3) 
Using (2.1) here again, the Adomian polynomials corresponding to the nonlinearity are 
derived as shown below. 

For 𝑛 = 0: 

𝐴0 = 𝑁(𝑦0) = (𝑦0
′′)2 

For 𝑛 = 1: 

𝐴1 =
1

1!

𝜕

𝜕𝜆
[𝑁 (∑ 𝜆𝑗𝑦𝑗

1

𝑗=0

)] 𝜆 = 0                                                                                                                  

 

𝐴1 =
𝜕

𝜕𝜆
[𝑁(𝑦0 + 𝜆𝑦1)]𝜆=0 

 

𝐴1 =
𝜕

𝜕𝜆
[(𝑦0

′′ + 𝜆𝑦1
′′)

2
]𝜆=0 

 

𝐴1 = [2(𝑦0
′′ + 𝜆𝑦1

′′)𝑦1
′′]𝜆=0, 

 
which finally gives 

𝐴1 = 2𝑦0
′′𝑦1

′′.                                                                                                                                                         
 

For subsequent values of 𝑛, the polynomials take after those of nonlinearity derived above 
for  

𝑁(𝑦) = 𝑦′(𝑥)2with the minor adjustments in the order of the derivatives, that is changing 
first order terms to second order terms throughout. So, the polynomials are: 
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For 𝑛 = 2: 

𝐴2 = 2𝑦2
′′𝑦0

′′ + (𝑦1
′′)2.                                                                                                                                        

For 𝑛 = 3: 

𝐴3 = 2𝑦0
′′𝑦3

′′ + 2𝑦1
′′𝑦2

′′.                                                                                                                                      
 

Nonlinearity of the Form 𝑵(𝒚) = 𝒚(𝒙)𝒍𝒏(𝒚(𝒙)).  

Consider the nonlinearity  
𝑁(𝑦) = 𝑦𝑙𝑛(𝑦)                                                                                                                                         (3.4) 

Using (2.1), the corresponding Adomian polynomials are derived as follows: 

For 𝑛 = 0: 
𝐴0 = 𝑦0𝑙𝑛(𝑦0) 

For 𝑛 = 1: 

𝐴1 =
1

1!

𝜕

𝜕𝜆
[𝑁 (∑ 𝜆𝑗𝑦𝑗

1

𝑗=0

)] 𝜆 = 0                                                                                                                  

 

𝐴1 =
𝜕

𝜕𝜆
[𝑁(𝑦0 + 𝜆𝑦1)]𝜆=0 

 

𝐴1 = [
𝜕

𝜕𝜆
(𝑦0 + 𝜆𝑦1)𝑙𝑛(𝑦0 + 𝜆𝑦1)]𝜆=0 

 

𝐴1 = [
(𝑦0 + 𝜆𝑦1)𝑦1

(𝑦0 + 𝜆𝑦1)
+ 𝑦1𝑙𝑛(𝑦0 + 𝜆𝑦1)]𝜆=0 

Therefore 
𝐴1 = 𝑦1𝑙𝑛𝑦0 + 𝑦1.                                                                                                                                             

 

For 𝑛 = 2: 

𝐴2 =
1

2!

𝜕2

𝜕𝜆2 [𝑁 (∑ 𝜆𝑗𝑦𝑗

2

𝑗=0

)] 𝜆 = 0                                                                                                                  

 

𝐴2 =
1

2

𝜕2

𝜕𝜆2
𝑁[𝑦0 + 𝜆𝑦1 + 𝜆2𝑦2]𝜆=0 

 

𝐴2 =
1

2

𝜕2

𝜕𝜆2
[(𝑦0 + 𝜆𝑦1 + 𝜆2𝑦2)𝑙𝑛(𝑦0 + 𝜆𝑦1 + 𝜆2𝑦2)]𝜆=0 

 

𝐴2 =
1

2
[2𝑦2 +

𝑦1
2

2𝑦0
+ 2𝑦2𝑙𝑛𝑦0]𝜆=0 

Thus, 

𝐴2 = 𝑦2𝑙𝑛𝑦0 +
𝑦1

2

2𝑦0
+ 𝑦2.                                                                                                                                   

 

For 𝑛 = 3: 

𝐴3 =
1

3!

𝜕3

𝜕𝜆3 [𝑁 (∑ 𝜆𝑗𝑦𝑗

3

𝑗=0

)] 𝜆 = 0                                                                                                                  
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𝐴3 =
1

3!

𝜕3

𝜕𝜆3
𝑁[(𝑦0 + 𝜆𝑦1 + 𝜆2𝑦2 + 𝜆3𝑦3)]𝜆=0 

 

𝐴3 =
1

6

𝜕3

𝜕𝜆3
[(𝑦0 + 𝜆𝑦1 + 𝜆2𝑦2 + 𝜆3𝑦3)𝑙𝑛(𝑦0 + 𝜆𝑦1 + 𝜆2𝑦2 + 𝜆3𝑦3)]𝜆=0 

 
Thus, 

𝐴3 = 𝑦3𝑙𝑛𝑦0 +
𝑦1𝑦2

𝑦0
−

𝑦1
3

6𝑦0
 .                                                                                                                            

And so on. 
 

Nonlinearity of the Form 𝑵(𝒚) = 𝒆
𝒚(𝒙)

𝟐  
Consider the nonlinearity  

𝑁(𝑦) = 𝑒
𝑦(𝑥)

2                                                                                                                                             (3.5) 
The Adomian decomposition corresponding to the nonlinearity are derived using (1) as 
follows: 

For 𝑛 = 0: 

𝐴0 = 𝑁(𝑦0) = 𝒆
𝒚𝟎
𝟐 .                                                                                                                                              

 

For𝑛 = 1: 

𝐴1 =
1

1!

𝜕

𝜕𝜆
[𝑁 (∑ 𝜆𝑗𝑦𝑗

1

𝑗=0

)] 𝜆 = 0                                                                                                                

 

𝐴1 =
𝜕

𝜕𝜆
[𝑁(𝑦0 + 𝜆𝑦1)]𝜆=0 

This implies 
 

𝐴1 =
𝜕

𝜕𝜆
[𝒆

𝑦0+𝜆𝑦1
𝟐 ]𝜆=0 

 

𝐴1 = 𝑦1[𝒆
𝑦0+𝜆𝑦1

𝟐 ]𝜆=0 

 
Therefore, 

𝐴1 = 𝑦1𝒆
𝒚𝟎
𝟐 .                                                                                                                                                       

 
For𝑛 = 2: 
 

𝐴2 =
1

2!

𝜕2

𝜕𝜆2 [𝑁 (∑ 𝜆𝑗𝑦𝑗

2

𝑗=0

)] 𝜆 = 0                                                                                                                  

 

𝐴2 =
1

2

𝜕2

𝜕𝜆2
𝑁[𝑦0 + 𝜆𝑦1 + 𝜆2𝑦2]𝜆=0 

 

𝐴2 =
1

2

𝜕2

𝜕𝜆2
[𝒆

𝑦0+𝜆𝑦1+𝜆2𝑦2
𝟐 ]𝜆=0 

 

𝐴2 = [
1

2
𝑦2𝒆

𝑦0+𝜆𝑦1+𝜆2𝑦2
𝟐 +

1

8
(𝑦1 + 2𝜆𝑦2)2𝒆

𝑦0+𝜆𝑦1+𝜆2𝑦2
𝟐 ]𝜆=0 
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This gives 
 

𝐴2 =
1

2
𝑦2𝒆

𝑦0
𝟐 +

1

2
𝑦2𝒆

𝑦0
𝟐 𝑦1

2.                                                                                                                             

 

For 𝑛 = 3: 
 

𝐴3 =
1

3!

𝜕3

𝜕𝜆3 [𝑁 (∑ 𝜆𝑗𝑦𝑗

3

𝑗=0

)] 𝜆 = 0        

 

𝐴3 =
1

6

𝜕3

𝜕𝜆3
[𝒆

𝑦0+𝜆𝑦1+𝜆2𝑦2+𝜆3𝑦3
𝟐 ]𝜆=0 

 

𝐴3 =
1

2
𝑦3𝒆

𝑦0
𝟐 +

1

4
𝑦1𝑦3𝒆

𝑦0
𝟐 +

1

48
𝑦1

3𝑒
𝑦0
2 .                                                                                                 

 
A Review of Adomian Decomposition Method 
A brief review of ADM is presented in this section for the sake of completeness, interested 
reader can find the details in Adomian (1994), Wazwaz (2011), Hermann and Saravi (2016), 
just to mention a few.  

Consider the 𝑛th order nonlinear initial value problem 

𝐿𝑦(𝑥) + 𝑁(𝑦(𝑥)) + 𝑅𝑦(𝑥) = 𝑔(𝑥)                                                                                                   (4.1𝑎) 

With the initial conditions 

𝑦(0) = 𝛼1, 𝑦′(0) = 𝛼2, . . . , 𝑦(𝑛−1)(0) = 𝛼𝑛 ,                                                                          (4.1𝑏) 
where 𝐿 is an 𝑛th order linear differential operator, 𝑁 is the nonlinear operator, 𝑅 is the 
remaining linear term and 𝑔(𝑥) is the inhomogeneous source term. 

The initial approximation 𝑦0(𝑥) is obtained as follows: 
𝑦0(𝑥) = 𝜓0(𝑥) + 𝛽(𝑥)                                                                                                                            (4.2) 

The 𝜓0(𝑥) in (8) is derived from the Taylor’s series using the initial conditions as follows: 

𝜓0(𝑥) = 𝑦(0) + 𝑥𝑦′(0) +
𝑥2

2!
𝑦′′(0) + ⋯ +

𝑥𝑛−1

(𝑛 − 1)!
𝑦(𝑛−1)(0)(4.3) 

That is  

𝜓0(𝑥) = 𝛼1 + 𝛼2𝑥 +
𝛼3𝑥2

2!
+ ⋯ +

𝛼𝑛𝑥𝑛−1

(𝑛 − 1)!
                                                                                     (4.4) 

On the other hand,𝛽(𝑥) is the result of application of 𝐿−1 (which is the inverse of the linear 
differential operator 𝐿) to 𝑔(𝑥) in (4.1𝑎). Thus 

𝛽(𝑥) = 𝐿−1𝑔(𝑥)                                                                                                                                       (4.5) 
The initial approximation is therefore obtained through adding (4.3) to (4.4), so we get 

𝑦0(𝑥) = 𝛼1 + 𝛼2𝑥 +
𝛼3𝑥2

2!
+ ⋯ +

𝛼𝑛𝑥𝑛−1

(𝑛 − 1)!
+ 𝐿−1𝑔(𝑥)                                                                      (4.6) 

The final solution is given by 
𝑦(𝑥) = 𝑦0(𝑥) + 𝑦1(𝑥) + 𝑦2(𝑥) + ⋯                                                                                                  (4.7) 

The other members 𝑦1(𝑥), 𝑦2(𝑥), … are obtained from the recurrence relation 

𝑦𝑘+1(𝑥) = −𝐿−1(𝑅𝑦) − 𝐿−1(𝑁(𝑦)),           𝑘 = 0,1,2, …                                                                (4.8) 

That is 
𝑦𝑘+1(𝑥) = 

− ∫ ∫ …
𝑥𝑛−1

0

∫ ∫ 𝑅𝑦𝑘(𝑡)𝑑𝑡𝑑𝑥1 … 𝑑𝑥𝑛−1

𝑥1

0

− ∫ ∫ …
𝑥𝑛−1

0

∫ ∫ 𝐴𝑘(𝑡)𝑑𝑡𝑑𝑥1 … 𝑑𝑥𝑛−1

𝑥1

0

𝑥2

0

𝑥

0

 (4.9)
𝑥2

0

𝑥

0
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where 𝐴𝑘(𝑥) with 𝑘 = 1,2,3, … are the Adomian polynomials corresponding to the given 

nonlinearity. 
 
Numerical Experiments 
In this section, few problems are considered for the implementation of the algorithm 
explained in the preceding sections. 
 
Problem 1 (Hermann and Saravi (2016)) 
Consider the second order nonlinear inhomogeneous IVP  

𝑦′′(𝑥) + 2𝑦(𝑥)𝑦′(𝑥) − 𝑦(𝑥) = 𝑆𝑖𝑛ℎ(2𝑥),          𝑦(0) = 0,     𝑦′(0) = 1. 
 
Solution 

𝑦0(𝑥) = 𝜓0(𝑥) + 𝛽(𝑥) 
𝜓0(𝑥) = 𝑦(0) + 𝑥𝑦′(0) = 0 + 𝑥. 1 = 𝑥                                                                                                      

𝛽(𝑥) = ∫ ∫ 𝑆𝑖𝑛ℎ(2𝑡)𝑑𝑡𝑑𝜏
𝜏

0

𝑥

0

 

 

𝛽(𝑥) = −
1

2
𝑥 +

1

4
𝑆𝑖𝑛ℎ(2𝑥) 

Therefore, 

𝑦0(𝑥) = 𝑥 −
1

2
𝑥 +

1

4
𝑆𝑖𝑛ℎ(2𝑥) 

Thus 

𝑦0(𝑥) =
𝑥

2
+

1

4
𝑆𝑖𝑛ℎ(2𝑥).                                                                                                                                   

The recurrence relation is given by  

𝑦𝑘+1(𝑥) = −2 ∫ ∫ 𝐴𝑘(𝑡)𝑑𝑡𝑑𝜏
𝜏

0

+ ∫ ∫ 𝑦𝑘(𝑡)𝑑𝑡𝑑𝜏
𝜏

0

𝑥

0

𝑥

0

,          𝑘 = 0,1,2, …                                             

where 𝐴𝑘(𝑥) are the Adomian polynomials derived for the nonlinearity (2). 

 

𝑦1(𝑥) = −2 ∫ ∫ 𝐴0(𝑡)𝑑𝑡𝑑𝜏
𝜏

0

+ ∫ ∫ 𝑦0(𝑡)𝑑𝑡𝑑𝜏
𝜏

0

𝑥

0

𝑥

0

 

 

𝑦1(𝑥) = −2 ∫ ∫ 𝑦0(𝑡)𝑦0
′ (𝑡)𝑑𝑡𝑑𝜏

𝜏

0

+ ∫ ∫ 𝑦0(𝑡)𝑑𝑡𝑑𝜏
𝜏

0

𝑥

0

𝑥

0

 

 
𝑦1(𝑥) =                                                                                                                                                               

−2 ∫ ∫ (
𝑡

2
+

1

4
𝑆𝑖𝑛ℎ(2𝑡)) (

1

2
+

1

2
𝐶𝑜𝑠ℎ(2𝑡)) 𝑑𝑡𝑑𝜏

𝜏

0

+ ∫ ∫ (
𝑡

2
+

1

4
𝑆𝑖𝑛ℎ(2𝑡)) 𝑑𝑡𝑑𝜏

𝜏

0

𝑥

0

𝑥

0

 

After simplification, we have 

𝑦1(𝑥) = −
3𝑥

32
−

1

8
𝑥𝐶𝑜𝑠ℎ(2𝑥) +

1

8
𝐶𝑜𝑠ℎ(𝑥)𝑆𝑖𝑛ℎ(𝑥) +

1

16
𝑆𝑖𝑛ℎ(2𝑥) −

1

128
𝑆𝑖𝑛ℎ(4𝑥).                 

Also,  

𝑦2(𝑥) = −2 ∫ ∫ 𝐴1(𝑡)𝑑𝑡𝑑𝜏
𝜏

0

+ ∫ ∫ 𝑦1(𝑡)𝑑𝑡𝑑𝜏
𝜏

0

𝑥

0

𝑥

0

 

Using the appropriate Adomian polynomials as we have it in (2), we get 

𝑦1(𝑥) = −2 ∫ ∫ (𝑦0
′ (𝑡)𝑦1(𝑡) + 𝑦0(𝑡)𝑦1

′ (𝑡))𝑑𝑡𝑑𝜏
𝜏

0

+ ∫ ∫ 𝑦1(𝑡)𝑑𝑡𝑑𝜏
𝜏

0

𝑥

0

𝑥

0

 

Making necessary substitutions and simplifying gives 
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𝑦2(𝑥) = −
31𝑥

512
+

𝑥3

64
−

17

128
𝑥𝐶𝑜𝑠ℎ(2𝑥) +

5

512
𝑥𝐶𝑜𝑠ℎ(4𝑥) +

115𝑆𝑖𝑛ℎ(2𝑥)

1024
+

1

16
𝑥2𝑆𝑖𝑛ℎ(2𝑥)

−
11𝑆𝑖𝑛ℎ(4𝑥)

1024
+

𝑆𝑖𝑛ℎ(6𝑥)

3072
. 

The solution is given by 

𝑦(𝑥) = ∑ 𝑦𝑛(𝑥)

∞

𝑛=1

 

Thus,  
𝑦(𝑥) = 𝑦0(𝑥) + 𝑦1(𝑥) + 𝑦2(𝑥) + .  .  .                                                                                                      

Therefore, 

𝑦(𝑥) =
177𝑥

512
+

𝑥3

64
−

33

128
𝑥𝐶𝑜𝑠ℎ(2𝑥) +

5

512
𝑥𝐶𝑜𝑠ℎ(4𝑥) +

1

8
𝐶𝑜𝑠ℎ(𝑥)𝑆𝑖𝑛ℎ(𝑥) +

435𝑆𝑖𝑛ℎ(2𝑥)

1024

+
1

16
𝑥2𝑆𝑖𝑛ℎ(2𝑥) −

19𝑆𝑖𝑛ℎ(4𝑥)

1024
+

𝑆𝑖𝑛ℎ(6𝑥)

3072
. 

 
Problem 2 (Hermann & Saravi, 2016) 
Consider the third order nonlinear inhomogeneous IVP 

𝑦′′′(𝑥) + 𝑦′′(𝑥)2 + 𝑦′(𝑥)2 = 1 − 𝐶𝑜𝑠(𝑥) 
with the associated boundary conditions 

𝑦(0) = 𝑦′′(0) = 0,    𝑦′(0) = 1.                                                                                                                 
 
Solution 

Here, the initial approximation 𝑦0(𝑥) is obtained using  
𝑦0(𝑥) = 𝜓0(𝑥) + 𝛽(𝑥) 

where  

𝜓0(𝑥) = 𝑦(0) + 𝑥𝑦′(0) +
𝑥2

2!
𝑦′′(0) = 𝑥,                                                                                                    

and 

𝛽(𝑥) = ∫ ∫ ∫ (1 − 𝐶𝑜𝑠(𝜉))𝑑𝜉𝑑𝑡𝑑𝜏
𝑡

0

𝜏

0

𝑥

0

 

which gives 

𝛽(𝑥) = −𝑥 +
𝑥3

6
+ 𝑆𝑖𝑛(𝑥).                                                                                                                        

Thus, 

𝑦0(𝑥) = 𝑥 − 𝑥 +
𝑥3

6
+ 𝑆𝑖𝑛(𝑥) 

Therefore, 

𝑦0(𝑥) =
𝑥3

6
+ 𝑆𝑖𝑛(𝑥).                                                                                                                                 

The subsequent members of the series are obtained via the recurrence relation 

𝑦𝑘+1(𝑥) = − ∫ ∫ ∫ 𝐴𝑘(𝜉)
𝑡

0

𝑑𝜉𝑑𝑡𝑑𝜏
𝜏

0

𝑥

0

− ∫ ∫ ∫ 𝐵𝑘(𝜉)
𝑡

0

𝑑𝜉𝑑𝑡𝑑𝜏
𝜏

0

𝑥

0

, 𝑘 = 0,1,2,   .  .  .                           

where 𝐴𝑘(𝑥) and 𝐵𝑘(𝑥) are the Adomian polynomials corresponding to the nonlinearities   

𝑁(𝑦) = (𝑦′′)2 and 𝑁(𝑦) = (𝑦′)2 respectively. 

Hence,   

𝑦1(𝑥) = − ∫ ∫ ∫ 𝐴0(𝜉)
𝑡

0

𝑑𝜉𝑑𝑡𝑑𝜏
𝜏

0

𝑥

0

− ∫ ∫ ∫ 𝐵0(𝜉)
𝑡

0

𝑑𝜉𝑑𝑡𝑑𝜏
𝜏

0

𝑥

0

 

Using the corresponding Adomian polynomials, we have 

𝑦1(𝑥) = − ∫ ∫ ∫ (𝑦0
′′(𝜉))2

𝑡

0

𝑑𝜉𝑑𝑡𝑑𝜏
𝜏

0

𝑥

0

− ∫ ∫ ∫ (𝑦0
′ (𝜉))2

𝑡

0

𝑑𝜉𝑑𝑡𝑑𝜏
𝜏

0

𝑥

0

 

This eventually gives 
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𝑦1(𝑥) = 10𝑥 −
𝑥3

6
−

𝑥5

60
−

𝑥7

840
+ 8𝑥𝐶𝑜𝑠(𝑥) − 18𝑆𝑖𝑛(𝑥) + 𝑥2𝑆𝑖𝑛(𝑥).                                                   

Also, we have 

𝑦2(𝑥) = − ∫ ∫ ∫ 𝐴1(𝜉)
𝑡

0

𝑑𝜉𝑑𝑡𝑑𝜏
𝜏

0

𝑥

0

− ∫ ∫ ∫ 𝐵1(𝜉)
𝑡

0

𝑑𝜉𝑑𝑡𝑑𝜏
𝜏

0

𝑥

0

 

Using the appropriate Adomian polynomials, we have 

𝑦1(𝑥) = − ∫ ∫ ∫ 2𝑦0
′′(𝜉)𝑦1

′′(𝜉)
𝑡

0

𝑑𝜉𝑑𝑡𝑑𝜏
𝜏

0

𝑥

0

− ∫ ∫ ∫ 2𝑦0
′ (𝜉)𝑦1

′ (𝜉)
𝑡

0

𝑑𝜉𝑑𝑡𝑑𝜏
𝜏

0

𝑥

0

 

This gives 

𝑦2(𝑥) = −584𝑥 +
7

3
𝑥3 −

𝑥5

6
+

𝑥7

180
+

11𝑥9

30240
+

𝑥11

118800
− 1020𝑥𝐶𝑜𝑠(𝑥) +

148

3
𝑥3𝐶𝑜𝑠(𝑥)

−
2

5
𝑥5𝐶𝑜𝑠(𝑥) +

1

4
𝑥𝐶𝑜𝑠(2𝑥) + 1606𝑆𝑖𝑛(𝑥) − 295𝑥2𝑆𝑖𝑛(𝑥) +

16

3
𝑥4𝑆𝑖𝑛(𝑥)

−
1

60
𝑥6𝑆𝑖𝑛(𝑥) −

9

4
𝐶𝑜𝑠(𝑥)𝑆𝑖𝑛(𝑥). 

The final result is obtained using 

𝑦(𝑥) = ∑ 𝑦𝑛(𝑥)

∞

𝑛=0

 

Thus, 
𝑦(𝑥) = 𝑦0(𝑥) + 𝑦1(𝑥) + 𝑦2(𝑥) + .  .  .                                                                                                      

Therefore, 

𝑦(𝑥) = −574𝑥 +
7

3
𝑥3 −

11𝑥5

60
+

11𝑥7

2520
+

11𝑥9

30240
+

𝑥11

118800
− 1020𝑥𝐶𝑜𝑠(𝑥) +

148

3
𝑥3𝐶𝑜𝑠(𝑥)

−
2

5
𝑥5𝐶𝑜𝑠(𝑥) +

1

4
𝑥𝐶𝑜𝑠(2𝑥) + 1589𝑆𝑖𝑛(𝑥) − 294𝑆𝑖𝑛(𝑥) +

16

3
𝑥4𝑆𝑖𝑛(𝑥)

−
1

60
𝑥6𝑆𝑖𝑛(𝑥) −

9

4
𝐶𝑜𝑠(𝑥)𝑆𝑖𝑛(𝑥). 

 
Discussion of Results and Conclusion 
The derivation of Adomian polynomials for some strong nonlinearities has been presented. 
The techniques involved are well elucidated in a manner that facilitates quick understanding 
by anyone that has the need to derive the polynomials for whatever form of nonlinearity. 
The numerical examples presented fall in the category of the said nonlinearities, just to be 
able to demonstrate its usage in the Adomian decomposition method. The correctness of the 
solutions of the numerical problems is easily verified by implementing the associated initial 
conditions. 
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