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Abstract 
In this paper, we developed an implicit continuous four-step hybrid backward difference 
formulae for the direct solution of stiff system. For this purpose, the Chebyshev polynomial 
was employed as the basis function for the development of schemes in a collocation and 
interpolation techniques. The schemes were analysed using appropriate existing theorem to 
investigate their stability, consistency, convergence and the investigation shows that the 
developed schemes are consistent, zero-stable and hence convergent. The methods were 
implemented on test problem from the literatures to show the accuracy and effectiveness of 
the scheme. 
 
Introduction 
Ordinary differential equation (ODE) has been an important tool in modelling real life 
situations in Engineering, Science and Technology. It is an equation of the form 
𝑦′ = 𝑓(𝑥, 𝑦), 𝑦(𝑎) = 𝑦0, 𝑥 ∈ [𝑎, 𝑏]       (1) 

Where 𝑓:ℝ × ℝ𝑚 ⟶ℝ𝑚, 𝑓 satisfies a Liptchitz conditions Henrici (1962), System (1) can be 

regarded as stiff if its exact solution contains very fast as well as very slow components 
(see, Dahlquist,1974). 
 
Stiff Initial Value Problems (IVPs) occur in any field of Sciences and engineering especially in 
electric circuits, chemical reactions, vibration, automatic control and combustion kinetics, 
theory of fluid mechanics. The solution is characterized by the transient and steady state 
components which restrict the step size of many numerical methods excepts method that 
has the properties of A-stability Suleiman et al. (2013) and Suleiman et al. (2014). We 
discover that the nature of the problem made it difficult to develop suitable methods for the 
solution of stiff problems. However, effort have been made by researchers such as Ngwane 
and Jator (2012), Abasi et al. (2014), Musa et al. (2013), Ibrahim et al. (2007), Biala et al. 
(2015), Babangida et al. (2016) among others, to develop methods for stiff ordinary 
differential equations. 
 
The Dahlquist barrier theorem was circumvented by several authors that proposed modified 
form of linear multi-steps methods (LMMs) known as hybrid methods by introducing the off-
grid points in the process of derivation. Gear (1965), Gragg and Stetter (1964) working in 
conjunction with Butcher (1965) by introducing the off-grid step point. These methods were 

shown to be of order 2𝑘 + 2. Gupta (1978) observes that the design of algorithm for hybrid 
methods is more difficult due to the occurrence of off-step function which increase the 
number of predictors involved to implement the method. 
 
Moreover, Curtis and Hirschfelder (1952) developed the backward differentiation formulae 
(BDF). Since then, a great effort has been made in order to obtain a new numerical 
integration with stability properties that is strong which is desirable for solving stiff system. 
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In this paper, the modified four-step backward differentiation formulae (BDF) are obtained 
from the continuous scheme and assembled into a block matrix equation which is applied 
toprovide the solution for (1).  The block method was first introduced by Milne (1952) for 
use as a means of starting values for predictor –corrector algorithms and has since then 
been developed by researcher (see Majid (2014), Wu & Xia (2001), Brumano and Trigiante 
(2000), for general purpose. The application is that it yields several results at a time which 
depends on the number of points on the structure of the block method. The research work 
is motivated by constructing a hybrid backward differentiation formula (HBDF) that satisfies 
the Dahlquist barrier theorem, whose stated that the maximum attainable order for 𝑘 even 

is 𝑘 + 2 and 𝑘 odd is 𝑘 + 1 if essential zero stability condition is to be achieved. In this 

research, we obtain the order of the method to be 5 which is 𝑘 + 1 and the zero stability 
condition is achieved.  
 
Derivation of the Method 
The four-step HBDF type block method is of the form: 

1

0

k

n k j n j n k n k

j

y y h f h f   


   



         (2) 

Where j ,  and k are coefficients to be determined. We proceed by assuming that the 

exact solution )(xy of the form 





5

0

)()(
j

jj tTxy           (3) 

Where j  are unknown coefficients to be determined and )(tT j are Chebyshev polynomial 

basis functions. The method is constructed with the Chebyschev polynomial as 

1)(0 xT , xxT )(1 , 12)( 2

2  xxT ; xxxT 34)( 3

3  , 188)( 24

4  xxxT ,

xxxxT 52016)( 35

5   by imposing the following conditions 

jnjn yxy  )(          (4) 

jnjn fxy   )(          (5) 

 
It is observed that equations (4) and (5) is a system of )1( k equations which must be 

solved to obtain the coefficients of j , 0,1, 2,...,5j  which are substituted into (3) and after 

some algebraic computations, the continuous representation yields the form 

knkn

j

jnj fxhfxhyxxy 



  )()()()(
3

0

       (6) 

Where )(xj , )(xj  and )(x are the continuous coefficients. The equation (6) is then 

used to obtain the main method by evaluating 4 nxx  and additional method by evaluating 

4

15



n

xx and differentiating equation (6) once and evaluate at 1 nxx , 2 nxx , and 

3 nxx to form the block. 

The combination of these methods yields the block method as given below: 
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 (7) 

The above equation gives the main and additional methods. 
 
Analysis and Implementation 
In this section, we discuss the local truncation error and order, convergence, the stability 
and implementation of the methods. 
 
From (7) the Four-step HBDF is written in the form: 
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where these are vectors notations. 
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Local Truncation Error and Order 
Following Fatunla (1991) and Lambert (1973), we define the Local Truncation Error (LTE) 
associated with (6) to be the linear difference operator 

)(]);([ )0(

1

)1(

1

)1()0(

rrrr FBFBhYAYAhxyL       (9) 

where we have taken )( jhxyy njn 
and )( jhxyf njn 

 

Assuming that )(xy is sufficiently differentiable, we can expand the term in (9) as a 

Taylor’s series about nx to obtain the expression as  

...)(...)()(]);([ 10  xyhCxyhCxyChxyL qq

q              (10) 

Where 
jC is a )15(  matrix 

These are vectors of numerical estimates from (7) 0,  1r r  which show that the method 

is zero-stable and consistent since the order 5p  . Hence it is convergent. 

It is evident from the calculation that the block method is of order 
T)5,5,5,5,5( and the error 

constant 
T)

536543232

3587045
,

8

15663
,

40

122703
,

1964880

56749
,

40935

263
(   

It is worth noting that zero stability is concerned with the stability of the difference system 

in the limit as h tends to zero. Thus, as ,0h the method (7) tends to the difference 

system  

01

)1()0(  rr YAYA        

The method (7) is zero stable if the roots 5,4,3,2,1ijR of the first characteristics polynomial 

)(R specified by 

0det)(
1

0

1)( 







 





i

ii RAR Satisfies 5,4,3,2,11jR and for those roots with 1jR , the 

multiplicity does not exceed 1, (See Fatunla (1991)). 
 
Thus, the Four-step HBDF is zero stable since 

,0)1()( 4321

4  RRRRRRR 15 R  

The HBDF is also consistent since each of it numerical integrations have order 𝑝 > 1, 
according to Henrici (1962). We can conclude that, the method is convergent. 
 
Region of Absolute Stability of HBDF methods 
The absolute stability region of the HBDF methods is constructed by reformulating the 
integrators as a general linear method of Butcher (1967) using notations introduced by 
Burrage and Butcher (1967). General Linear Method (GLM) is represented by a partition and 

)()( rsrs  characterised by the four matrices VUBA ,,, expressed in the form 
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The elements of these matrices VUBA ,,, are substituted into 

the recurrence relation ,)( ][]1[ ii yzMy 
1,...,2,1  Ni  

Where VzAzBUzM 1)1()(        (11) 
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The method is plotted in a MATLAB environment to produce the RAS of the HBDF.  
It is observed that, the method is A-stable as shown in figure 1. 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1: Showing Region of Absolute Stability of the HBDF 
 
Numerical Solution   
In this section, numerical examples are carried out for all computations with the written 
code in Maple 2015. 
 
Example 4.1 

We consider stiff systems (See Akinfenwa, 2011), in the range 100  t  

1)0(,998998 1211  yyyy  

1)0(,1999999 2212  yyyy  

The exact solution is given by the sum of two decaying exponential components 
tttt eeyeey 1000

2

1000

1 32,34    

 

The stiffness ratio is  1:1000 . The result of the proposed method is compared with 

Akinfenwa et al. (2011) at the end of 10t  is presented in Table 1. 
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Table 1: Comparison of 8BBDF  for example 4.1 with h=0.1 

t  Exact      
3

1 10)( ty
3

2 10)( ty  

8BBDF
3

1 10y 

3

2 10y  

Proposed method

)( 4HBDF  
3

1 10y   

3

2 10y  

8BBDF  

(Absolute 
error) 

22

11

)(

)(

yty

yty




 

Proposed 
method 

22

11

)(

)(

yty

yty




 

10
 

49941815997190.0

24970907995595.0

 

68331815997194.0  

34160907998597.0
 

48761815997190.0  

23670907998595.0
 

1310183.4   
103.00209 10  

151.180 10  
102.9999 10

 

 
Example 4.2 
We consider a system of equation which has been solved by Jackson and Kanue (1975) and 
Sahi et al. (2012) 

1)0(,95 1211  yyyy  

1)0(,97 2212  yyyy  

With exact solution of the system given by  

tt eety 262

1
47

48

47

95
)(    

tt eety 296

2
47

1

47

48
)(    

The proposed method is compared with results obtained by Jackson and Kanue (1975) and 
Sahi et al. (2002) and the results are displayed in Table 2. As expected, the result show 
better accuracy than Jackson and Kanue (1975) and Sahi et al. (2002). 
 
Table 2: Comparison between existing methods with the proposed method 

h  Jackson and Kanue (1975) 

22

11

)(

)(

yty

yty




 

Sahi et al. (2012) 

22

11

)(

)(

yty

yty




 

Proposed Method 

22

11

)(

)(

yty

yty




 

0625.0  7103   
7104   

11109   
8101   

12102   
11101   

03125.0  8101   
8101   

12104   
12104   

13103   
13102   

 
Example 4.3 
We consider the second order ordinary differential equation given by 

010001001  yyy and reduced to a system of first order differential equation 

1)0(,  yzy 0)0(,10011000  zzyz  

The result of the problem has been compared with Abhulimen (2009), Abhulimen and 
Okunuga (2008). 
 

The stiff system has eigenvalues 11  and 10002   for the purpose of comparison, we 

solved the problem from the range of integration of  1,0 . Numerical results are shown below 

and it can clearly be seen that the results are more accurate than those presented by 
Abhulimen (2009), Abhulimen and Okunuga (2008) as displayed in Table 3. 
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Table 3: Comparison of proposed method for example 4.3 

Method t   
0 1error y y   

Abhulimen (2009) 1  7108.1   

Okunuga (1999) 1  81026.5   

Abhulimen & Okunuga (2008) 1  91029.5   

Proposed method 1  121086.2   

 
Example 4.4. Consider the nonlinear problem 

2

1 1 1 1

2 1 2 2 2

1002 1000 ,   (0) 1

(1 ),    (0) 1

y y y y

y y y y y

    

    
 

 
This problem has been solved by Wu and Xia (2001) using two low accuracy explicit 
methods in vector form and also Akinfenwa et al., (2013) solved the problem using a 
continuous block backward differentiation formula. Their results are reproduced in tables 4 
and 5 and compared with our method in tables 6 and 7 with values of t  the independent 

variable, h  the step size, and N  the number of computation step, the theoretical solutions; 

the proposed solution, and the absolute error. 
 

Table 4: Absolute error for Akinfenwa, Jator, and Yao (2013) 

t  h  N  Y
 

Theoretical Akinfenwa, Jator, and 

Yao 4k   

Absoluteerro
r 

1 0.02
 

50  
1y

 

11.353352832366127 10   

 

11.35335286619327 10  9 3.3827 10  

   
2y

 

13.678794411714423 10

 

13.678794457979147 10  

 

94.6265 10  

10
 

0.02
 

500
 

1y

 

92.061153622416581 10  

 

92.061154110095654 10

 

164.8766 10  

   
2y

 

54.539992976383902 10  

 

54.539993515208483 10

 

125.38966 10

 

 
 
Table 5: Absolute error for Wu and Xia (2001) 

t  h  N  Y
 

Theoretical Wu and Xia (2001) Absolute 
error  

1 0.002
 

500  
1y

 

11.353352832366127 10  

 

11.353350271728111 10

 

7 2.5606 10  

   
2y

 

13.678794411714423 10

 

13.678795213211519 10  

 

8 8.0150 10  

 

10
 

0.001
 

10000
 

1y

 

92.061153622416581 10

 

92.061154177118385 10

 

16 5.5468 10  

   
2y

 

54.539992976383902 10

 

54.539993585613384 10  

 

126.0936 10  
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Table 6: Absolute error for the proposed 4
HBDF  

t  h  N  Y
 

Theoretical Proposed Method Absolute 
error  

1 0.02
 

50  
1  y

 

11.353352832366127 10   

 

11.3533528814908014 10    115.1537 10

 

   
2y

 

13.678794411714423 10

 

13.6787944124186063308 10

 

117.0418 10

 

10
 

0.02
 

500
 

1y

 

92.061153622416581 10  

 

92.0611536298007748961 10

 

187.38419 10

 

   
2y

 

54.539992976383902 10  

 

54.5399929843545673782 10  

 

147.97066 10   

 

 
 

Table 7: Absolute error for the proposed 4
HBDF  

t  h  N  Y
 

Theoretical Proposed Method Absolute 
error  

1 0.002
 

500  
1y

 

11.353352832366127 10  

 

11.3533528323661321371 10  

 

169.99201 10   

 

   
2y

 

13.678794411714423 10

 

13.6787944117144303093 10

 

169.99201 10  

10
 

0.001
 

10000
 

1y

 

92.061153622416583 10

 

92.061154177118387 10  165.54702 10  

   
2y

 

54.539992976383905 10

 

54.539993585613387 10  126.09229 10  

 
Conclusion 
A 4-step HBDF with continuous coefficients has been implemented as a self-starting method 
for solution of stiff systems of ODEs. The method avoids complicated subroutines needed for 
existing methods requiring starting values or predictors. The stability and consistency 
property of our method makes it attractive for numerical solution of stiff problems. We have 
demonstrated the accuracy of the methods for both linear and non linear problems. It is 
recommended that future research be focused on the implementation of the method to 
parabolic partial differential equations since it is L0- stable. 
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