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Abstract 
Oil shale is fast becoming an important alternative energy source due to its huge reserves. With 
oil shale it is quite possible to satisfy the future oil requirement.This study presents a one-
dimensional transient coupled mass and heat transport model incorporating combustion front 
velocity, describing the in-situ combustion of oil shale in a porous medium. The coupled 
nonlinear partial differential equations describing the phenomenon were decoupled using 
perturbation method and solved analytically using eigenfunctions expansion technique and 
direct integration. The governing parameters of the problem are the Frank-Kamenetskii number 

( ), Peclet energy number  e , Peclet mass number  em , Reynolds number  eR , Darcy 

number  aD  and Heat exchange coefficient   . The results obtained were presented 

graphically and discussed. These results showed that the species concentrations  X and Y

and temperatures  and  distribution in porous medium are significantly influenced by the 

Frank-Kamenetskii number, heat exchange coefficient, time and distance.  
 
Keywords: Combustion, In-situ, Oil shale, Porous medium, Stimulation. 
 
Introduction 

           Oil shale is currently gaining attention as a potential abundant source of oil whenever the price 
of crude oil rises. Oil shale is found all over the world, including China, Israel, and Russia. The 
United States, however, has the most shale resources. The oil shale in its natural state contains 
kerogen, a precursor to petroleum. Kerogen is the solid, insoluble, organic material in the shale 
that can be converted to oil and other petroleum products by pyrolysis and distillation. 
However, all the types of kerogen consist mainly of hydrocarbons; smaller amounts of sulphur, 
oxygen and nitrogen; and a variety of minerals (Abdelrahman, 2015). 

 
Deposits of oil shale have been found in 27 countries worldwide and this is becoming an 
important alternative energy source due to its huge reserves. With oil shale, it is quite possible 
to satisfy the future oil requirement. Upon being heated, kerogen in oil shale can be converted 
to oil and gas. The heating process is called pyrolysis or retorting (Zheng et al., 2017). 
 
Several works have been done on the in-situ combustion of oil shale. Lapene et al. (2007) 
modeled coupled mass and heat transport in reactive porous medium using homogeneous 
description at a Darcy-scale. Local non-equilibrium transport of heat was treated with a two 
field temperature, one for the gas and one for the solid phase.  
 
Olayiwola et al. (2011) extended Lapene et al. (2007) work to a situation where there is 
Arrhenius heat generation and chemical reaction. They made additional assumption that the 

reaction is in steady-state so that time derivatives are zero 












0

t
. They examined the 
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properties of solution of the model and obtained the analytical solution using asymptotic 
expansion. 
 
In another study, Olayiwola (2012) studied coupled heat transport in Arrhenius reactive porous 
medium using a homogeneous description at the Darcy-scale. In this study, it was assumed that 
there is a perfect contact between gas and solid phase. Eigenfunctions expansion technique 
was used and the results showed that the heat transfer increases as Frank-Kamenetskii number 
increases and scaled thermal conductivity decreases. 
Zheng et al. (2017) focused on the numerical simulation of in-situ combustion of oil shale. 
Numerical test was used for the stimulation of oil shale and their result showed that varying gas 
injection rate and oxygen was important in the field test in-situ combustion. 
It is interesting to note that this study extends the work of Olayiwola (2012) by incorporating 
combustion front velocity, continuity and momentum equations and assume no perfect contact 
between gas and solid phases. 
 
Model Formulation 
The partial differential equations that describe the in-situ combustion of oil shale can be written 
as (Olayiwola, 2012): 
 
The continuity equation: 
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The momentum equation: 









































x

u

xx

p

x

u
u

t

u cc

c

c                         (2) 

The gas phase energy equation: 
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The solid phase energy equation: 

 
        sR

oxfsesg
s

s
s

c
s

ss eCCh
xxx

u
t

c







































  11

   

(4)                                                                                                                                                                                          

The oxygen mass balance:  
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The fuel mass balance:  
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Darcy’s law
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where    is  the activation energy, is the frequency factor,    and     are  orders of the 

gaseous reaction, g is gas density, R is the gas constant, cu is combustion front velocity, s is 

thermal conductivity of solid phase, g is thermal conductivity of gas phase,  is viscosity, t is 

time, x  is position,  is the porosity, sc is heat capacity of solid phase, gc is the heat capacity of 

gas phase, e is the external temperature, s is the temperature of solid phase, g is the 

temperature of gas phase, is heat generation constant, h is heat transfer coefficient, oxC is 

concentration of oxygen, fC is fuel concentration,  is exchange term between the phases,   

is the permeability , oxD  is the diffusion of oxygen, fu is filtration velocity and     is the 

pressure. 
 

The dependence of thermal conductivities, dynamic viscosity and oxygen diffusion coefficient on 

the temperatures is taken into account by mathematical expression (Olayiwola, 2012): 
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where 0sk the initial solid phase thermal conductivity, 0gk is the initial gas phase thermal 

conductivity 0  is the initial temperature of the medium, 0  is the initial viscosity, 0D is the 

initial diffusion coefficient, xD0 is the diffusion of oxygen, sk is the thermal conductivity of the  

solid phase, gk is the thermal conductivity of the gas phase and  is the viscosity. 

 
Coordinate Transformation 
Here, we shall neglect the gravitational effect due to the small size in the vertical direction and 

we let .  sg It simple to eliminate the continuity equation (1) by means of streamline 

function (Olayiwola, 2011): 
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Then, the coordinate transformation becomes: 
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Using equations (10) and (11), equations (1) – (8) can be simplified to: 
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Assuming the porous space of the medium is filled initially with fuel and oxygen. Then, the 
initial and boundary conditions are given as follows: 
Initial conditions:  
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Boundary conditions:  
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Method of Solution 
In order to solve the in-situ combustion problem modeled by equations (12) – (19), we consider 
the pressure gradient to be parabolic (Olayiwola, 2012) 
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Non-dimensionalisation 
We non-dimensionalised (15) - (22) using the following set of dimensionless variables: 
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to obtain (after dropping the primes) 
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exchange coefficient, ,1
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Solution by Eigenfunctions Expansion Method 
Here, equations (22) - (28) is solve using eigenfunctions expansion method. In the limit of 

,0 Ayeni (1978) has shown that 0e  can be approximated as   021  e . Suppose the 

solution ,,, u  and  in equations (22) – (28) can be expressed as: 
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Substituting (29) and (30) into (22) – (28) and obtain the order of  as follows: 
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Using eigenfunctions expansion method and direct integration, we obtain the solution of 
equations (31) - (40) as:  
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 2222  egqgfqfqA ,   hqejqjhqB 222 2  ,  222  emqmC , 

The computations were done using computer symbolic algebraic package MAPLE (version 17, 
Maplesoft, USA) 
 
Results and Discussion 
The system of partial differential equations describing the transient in-situ combustion of oil 
shale in porous medium has been solved analytically using eigen functions expansion method 
and direct integration. The analytical solutions (equations (41) - (50)) are computed and 
presented graphically with the aid of computer symbolic algebraic package MAPLE 17 for 

various values of dimensionless parameters, 010 ,,   and 1 . 
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Figure1 presents the influence of Frank-Kamenetskii number 0  on gas phase temperature 

profile. It is observed that gas phase temperature increases significantly along distance as 
Frank-Kamenetskii number increases. This is due to increase in heat of reaction .  

 
Figure1: Gas phase temperature ),( t against distance   for different values of 0   

and 101.0,1,1,1,01.0,1,01.0,4.0,1,1,1 2   qqDRpp aeeem  

 

Figure 2 displays the effect of Frank-Kamenetskii number 0  on gas phase temperature profile. 

It is observed that gas phase temperature increases significantly with time as Frank-
Kamenetskii number increases. 

 

  
 

Figure2: Gas phase temperature
 

),( t against time t  for different values of 0   and  

101.0,1,1,1,01.0,1,01.0,4.0,1,2,1 2   qqDRpp aeeem  

1,1.0,1.0,1,1,01.0,1,01.0 2   qqDa
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Figure3 shows the effect of Frank-Kamenetskii number  1  on solid phase temperature profile. 
It is observed that solid phase temperature increases significantly along distance as Frank-
Kamenetskii number increases. This is due to increase in heat of reaction 

 
 

Figure4 shows the effect of Frank-Kamenetskii number  1  on solid phase temperature profile. 
It is observed that the solid phase temperature significantly increases with time as Frank- 
 
Kamenetskii number increases. Clearly, Frank-Kamenetskii number improves production of gas 
due to increase in heat of reaction. When there is increase in heat of reaction the gas 
production rate is boosted. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4:  ),(re temperatuphase solid t against time t  for different values of 1   and  

1,10.0,1,1,1,01.0,1,01.0,4.0,1,2,1 2   qqDRpp aeeem  

 

Figure3: Solid phase temperature
 

),( t against distance   for different values of 1   and 

1,01.0,1,1,1,01.0,1,01.0,4.0,1,1,1 2   qqDRpp aeeem  

1,01.0,1,1,1,01.0,1,01.0 2   qqDa  
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Figure 5 depicts the effect of 0   on gas phase temperature profile. It is observed that gas 

phase temperature increases with time (t) as 0  increases. 

 

 

Figure 5: Gas phase temperature ),( t against time t  for different values of 0   and 

1,10.0,1,1,1,01.0,1,01.0,4.0,1,2,1 2   qqDRpp aeeem  

Figure 6 displays the effect of 0  on gas phase temperature profile. It is observed that gas 

phase temperature increases significantly along distance as Heat exchange coefficient 
increases. Obviously, Heat exchange coefficient boosts the production of gas

 
Figure 6: ),(re temperatuphase Gas t against distance   for different values of 0   and 

1,10.0,1,1,1,01.0,1,01.0,4.0,1,2,1 2   qqDRpp aeeem  

Figure 7 represents the effect of 1   on solid phase temperature profile. It is observed that 

solid phase temperature increases with time (t) as 1  increases. 
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Figure 7: Solid phase temperature ),( t against time t  for different values of 1   and 

1,10.0,1,1,1,01.0,1,01.0,4.0,1,2,1 2   qqDRpp aeeem  

 

Figure 8 displays the effect of 1  on solid phase temperature profile. It is observed that solid 

phase temperature increases significantly along distance as Heat exchange coefficient 
increases. 

 
Figure 8: Gas phase temperature ),( t against distance   for different values of 1   and 

1,10.0,1,1,1,01.0,1,01.0,4.0,1,2,1 21   qqDRpp aeeem

 

Conclusion 
In this study, a one-dimensional transient coupled mass and heat transport model incorporating 
combustion front velocity, formulated to determine the distribution of temperature and species 
concentration in a porous medium is solved analytically using eigenfunctions expansion 
technique and direct integration. The governing parameters of the problem are the Frank-
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Kamenetskii number ( ), Peclet energy number  e ,Peclet mass number  em ,Reynolds 

nusmber  eR , Darcy number  aD and Heat exchange coefficient   . From the results 

obtained, it can be concluded that: 
(i)  Frank-Kamenetskii number enhanced both the gas phase and solid phase temperatures. 
(ii)  Heat exchange coefficient enhanced both the gas phase and solid phase temperatures. 
(iii)  These results may be of importance to petroleum engineers, geologists and scholars 
 attempting to develop programming standards and to researchers interested in the 
 theoretical aspects of oil shale combustion. 
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