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Introduction and Preliminaries 

Let 
pA denote the class of functions of the form 
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which are analytic and p  valent in the open unit disk { :| | 1}.U z z   

Opoola, in 1984 defined the class ( )nT    to be the subclass of the functions defined in (1.1) 

when      satisfying the condition 
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where nD  is the Salagean differential operator defined recursively as follows: 
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The class has been repeatedly investigated by several authors (see Ntatin (2010), Al-Shaqsi et 
al (2010) and Fadipe-Joseph et al (2007)). 
From (1.1), and using binomial expansion we have 
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                                           ∑       
                                                                

    

And by the operator defined in (1.3), (1.5) becomes 

                         ∑  (
    

  
)
  

   

     
                                                                      

From (1.2) and (1.6) we defined the class of functions ( ) pf z A satisfying the condition 

                 {
       

   }                                                              (1.7)           

 

The class is denoted by ( , ).nT p   

 

Similarly a function ( ) pf z A is in the class ( , )nT p  if it satisfies the condition 
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The Hankel determinants ( )qH n  of ( )f z for 1q   and 1n   stated in Vamshee and Ramreddy 

(2016),  Yavuz 2015 and Noonan and Thomas (1976) is defined as 
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The determinant has been considered by different authors for several classes of functions in 
geometric function theory (see, Sahoo (2018), Alarifi et al. (2017), Patil and Khairnar (2017), 
Vamshee and Ramreddy (2016). Yavuz (2015). Sudharsan and Vijaya (2014)). 
 
Specifically for the case of 2q   and 2n   known as the second Hankel determinant 

(functional), given by 

2 3 2

2 2 4 3

3 4
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a a

H a a a
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were obtained for various subclasses of univalent and multivalent analytic functions. The 
bounds give information about the geometric properties of this class of functions, in particular, 
the growth and distortion properties of these functions are determined by the bounds of its 
second coefficient. Vamshee and Ramreddy (2016) considered the Hankel determinant for the 

case of 2q   and 1n p   denoted by 2( 1),H p  given by 
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for the class of Multivalent functions of bounded turning of order alpha. And obtain the sharp 

upper bound for the functional 2

1 3 2p p pa a a    i.e. 
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for the class 
 
Motivated by this result and several others, we consider the second Hankel determinant for the 
class of functions defined in (1.7) and (1.8), and seek a sharp upper bound for the functional 

2

1 3 2p p pa a a    for functions belonging to this classes. 

 
Preliminary results 
The following Lemmas are required to prove our results. Let   be the class of all functions 

( )p z analytic in the unit disk U such that Re ( ) 0p z   and 
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            (2.1) 

 
Lemma 2.1: (Pommerenke, 1966). 

Let p P then 2, 1,2,kc k   and the inequality is sharp for 
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Lemma 2.2: (Hayami & Owa, 2009) 

If 
1
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   satisfies the following inequality 
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for some (0 ),p    then 

2( ) ( 1,2,3, ).kc p k          (2.3) 

 
Lemma 2.3: (Libera & Zlotkiewicz, 1983) 

The power series for ( )p z  given in (2.1) converges in U to a function in P if and only if the 

Toeplitz determinant 
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and k kc c   are all non-negative. They are strictly for 01
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   real and ,k jt t  for ,k j  where       

   

   
 in this case 0nD   for 

( 1)n m   and 0nD   for .n m  

Lemma 2.4: (Hayami & Owa, 2009) 
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If a function
1

( ) k

kk
p z p c z




   satisfies Re ( ) ( )p z z U  for some (0 ),p    then 
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for some complex number xand y ( 1, 1)x y   

 
 Main Results 
 
Theorem 3.1: 

If ( ) ( , ),nf z T p   then  
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The result obtained is sharp. 
 
Proof: 

Let ( ) ( , ).nf z T p   Then there exist a ( ) ,p z P  such that 
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Expanding both side of (3.2) we have 
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equating powers of  ,z  2z  and 3z  we obtain 
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from (3.3) and (3.4) we have that 
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substituting for 2c  and 3c  using lemma 2.4, and for some x  and y  such that 1, 1.x y   

simplifying we have 
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If 1c c  and 0 2( )c p    ,  applying the triangle inequality we obtain 
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with 1.x    Furthermore, 
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and by elementary calculus we see that ( ) 0F   for 0.  Thus implying that F is an 

increasing function and the upper bound for (3.6) correspond to 1   and 0c  which gives, 
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This complete the proof 
 
Remark 1:  For 0 1and p n      then 
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Which coincide with the results of Vamshee and Ramreddy (2016) and Janteg et al. (2007) 
 
Remark 2:  For 2 1p and n      then  
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8
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Which coincide with the results of Yavuz (2015) 
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Theorem 3.2: 

If ( ) ( , ),nf z T p   then 
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The result obtained is sharp. 
 
Proof: 

Let ( ) ( , ).nf z T p   Then there exist a ( )p z P  with (0) 1p   and Re ( ) 0 ,p z U   such that 
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Expanding both side of (3.9) and equating the powers of 2,z z  and 3z gives 
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Applying triangle inequality, substituting for 
2c  and 

3c  by lemma 2.4, and letting 1c c  for 

some x and y  such that 1, 1.x y   simplifying gives 
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with 1.x    Furthermore,  
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And by elementary calculus ( ) 0F    for 0.   Thus implying that F  is an increasing 

function and the upper bound for (3.13) correspond to 1   and 0c   which implies (3.8). 

 
Remark 3: 
For 0    and 1p n    then 

2

2 4 3 1a a a   

which coincide with the result of Janteng et al. (2007). 
 
Conclusion 

The upper bounds for the functional  |             
 |  for functions belonging to   

 
      and 

  
 
      are obtained. And this coincide with earlier known results in univalent function theory. 
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