
Journal of Science, Technology, Mathematics and Education (JOSTMED), 16(3), September, 2020 
 

41 

 

AN OPTIMAL 6-STEP IMPLICIT LINEAR MULTISTEP METHOD FOR INITIAL  
VALUE PROBLEMS 

 
*NDANUSA, A., & ADEBOYE, K. R. 

Department of Mathematics, Federal University of Technology, Minna, Nigeria 
*E-mail: as.ndanusa@futminna.edu.ng, profadeboye@gmail.com 

                         
Abstract 
In this paper, we employ Taylor series expansion to develop a 6-step implicit linear 
multistep method of optimal order, for solving initial value problems. By assigning a suitable 
value to the free parameters involved, we develop a numerical scheme. Of course, many 
numerical schemes for solving differential equations abound. However, for a scheme to be 
of any practical value, a necessary condition for its acceptability is its convergence. Our 
scheme has thus satisfied the necessary and sufficient conditions for convergence; hence, 
its acceptability.  More so, we apply the scheme to solve some practical problems involving 
differential equations. A comparison of results obtained with exact solutions will further 
establish the efficiency of this method.  
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Introduction 
The Cauchy’s problem for the differential equation of the nth order 

 ( )   (            (   ))                                                     ( ) 

consists in finding the function    ( ) satisfying this equation and the initial conditions 
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where         
        

(   ) are the given numbers. 
Cauchy’s problem for a system of differential equations 

   

  
   (              ) 
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                                                  ( ) 

consists in finding the functions              satisfying this system and the initial conditions 
  (  )        (  )            (  )                                  ( ) 

 
A system containing higher-order derivatives and solved with respect to senior derivatives of 
the required functions by introducing new unknown functions can be reduced to the form 

(3). In particular, the differential equation of the  th order  

 ( )   (            (   )) 

is reduced to the form (3) with the aid of the substitution 

                       (   )  
 
which gives the following system: 
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If the general solution of equation (1) or system (3) is successfully found, then Cauchy’s 
problem is reduced to finding the values of arbitrary constants. But it is rather difficult to 
find the exact solution of Cauchy’s problem and it is successfully found only in rare cases; 
more often we have to solve Cauchy’s problem using approximate methods by the 
application of numerical methods (Kopchenova and Maron, 1981).  
 
Several studies on numerical methods for solving differential equations have been carried 
out including Ndanusa (2004), that derived a linear multistep method of order eight for 
solving IVPs. One outstanding feature of this method is that it has a considerable number of 
free parameters, the judicious use of which can produce schemes that have less function 
evaluations than usual at each step of the computation. Some later developments in this 
field include the works of Evans and Tremaine (1999), Galeone and Gerrappa (2006), 
Gerrappa (2009), Vlachos et al. (2009), Vigo-Aguiar and Simos (2001), Afolyan et al. (2012), 
Panopoulos et al. (2013) and Albi et al. (2020). 
 
Materials and Methods 
 
Derivation of Scheme: We consider the IVP (1) and initial conditions (2). Let yn be an 

approximation to the theoretical solution at   , that is, to y(xn), and let fn=f(xn ,yn). Then, 
we say a linear multistep method (lmm) of step number k, or a linear k–step method is a 
computational method for determining, the sequence {yn} that takes the form of a linear 
relationship between yn+j,  fn+j,  j = 0,1, …, k. Thus the general lmm may be written. 

∑        ∑      

 

   

                                                     ( )

 

   

 

 
Where    and    are constants; we assume     and that not both    and    are zero. We 

say that the method is explicit if        and implicit if      (Lambert, 1973). 
We employ the method of Taylor expansions as outlined by Lambert (1973) to derive our 6-
step method of order 8 thus. 
 
Let   be the linear difference operator defined by 

   ( )    )  ∑ [   (    )      
 (    )] 

                         ( )  

 
where y(t) is an arbitrary function, continuously differentiable on [a, b]. if we expand 
y(t+jh) and its derivative y’(t+jh) as Taylor series about t, and collecting like terms we have 

   ( )         ( )       ( )     
   ( )              ( )               ( ) 

 
where cq are constants. 
 
Suppose we choose to expand y(t+jh) and y’(t+jh) about t+rh; where r need not necessarily 
be an integer. We obtain 

   ( )          (    )       (    )              (    )      ( ) 

If we employ the Taylor expansions  
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where y(0)(t) = y(t); and substitute in (8), we obtain on equating term by term with (7) 
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It follows that co = c1 = . . . cp = 0  iff                   

 
The formulae for the constants    expressed in terms of   ,    are 
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Consistency demands that, 
 ( )                          ( )   ( )                                              (  ) 

where,                                                   

 ( )  ∑   
 

 

   

                                                                        (  ) 

and 

 ( )  ∑   
 

 

   

                                                                      (  ) 

 
are called the first and second characteristic polynomials of (5) respectively. 
 
The lmm (5) is said to be zero-stable if no root of (12) has modulus greater than one, and if 
every root with modulus one is simple. 
 
Our goal is to derive a 6-step method of optimal order (i.e. order 8). It implies all the roots 

of the first characteristic polynomial must lie on the unit circle. We know that  ( ) is a 
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polynomial of degree 6. Hence, by consistency, it has one real root at +1 and another real 
root at -1. The four remaining roots must be complex.  
Hence we have 

                                              

 
Hence 

              (   )     (     )         
    (     )       (   )         

}                (  ) 

 
We now state the order requirement in terms of the coefficients Dq . 
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Setting r = 3 and Dq = 0, q = 2, 3, 4, 5, 6, 7, 8 we have, 
 

   
 

  
                                                       

   
 

  
                             

 

  
                           

   

   
 

  
                         

 

  
                              

   
 

  
                             

 

  
                           

   

   
 

  
                            

 

  
                            

   

   
 

  
                             

 

  
                           

   

   
 

  
                            

 

  
                            

   
However, on inserting the values we have obtained for the    into these equations we have 
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We can satisfy the first, third, fifth and seventh of these equations if we choose  

                  

 
The remaining three equations give 

             
 

 
          (   )                               (  ) 

             
 

 
           (   )                              (  ) 

             
 

 
             (   )                 (  ) 

 
Solving the above set of equations give 
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Finally, solving D1 = 0 gives 

   
 

   
(                (   ))                        (  ) 

 

We solve for the error constant,    
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Since                                a and b are restricted to the range 

               .  
 
Our choice of values for a and b is guided by the fact that we like to minimize the error 
constant as well as the need to develop a method that makes computation easier by 
reducing the number of operations involved. We assign the following values to the free 
variables a and b. 

   
 ⁄     

 ⁄   

 

This causes four coefficients         and   ,   to vanish. Thus we have the following values 

for the coefficients      . 
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The error constant is obtained from equation (21) as:  -0.006428571429.  
Thus, our scheme is as follows: 
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Convergence Analysis 
For the  scheme (22) to be convergent, we establish the following: 
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Hence the scheme is consistent. 
 

Next, we find the roots of ( ): 
 ( )         

 
And we have the following as its roots: 
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It is obvious that |  |                        
 
Thus                satisfy the zero stability condition. Hence, we conclude the scheme is 
convergent. 
 
Results and Discussion 
Tables 1 and 2 show the results obtained when the scheme is applied to solve some 
differential equation problems. The results of such computations is compared with the exact 
solutions as well. 
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Table 1:              (   ) (   )  ( )           
               ( )        

   EXACT  ( ) ERROR 

0.0 1.0000000000 1.0000000000 0.0000000000E+00 
0.1 1.1000000000 1.1000000000 0.0000000000E+00 
0.2 1.2000000000 1.2000000000 0.0000000000E+00 

0.3 1.3000000000 1.3000000000 0.0000000000E+00 
0.4 1.4000000000 1.4000000000 0.0000000000E+00 
0.5 1.5000000000 1.5000000000 0.0000000000E+00 
0.6 1.6000000000 1.6000000000 0.0000000000E+00 

0.7 1.7000000000 1.7000000000 0.0000000000E+00 
0.8 1.8000000000 1.8000000000 0.0000000000E+00 
0.9 1.9000000000 1.9000000000 0.0000000000E+00 
1.0 2.0000000000 2.0000000000 0.0000000000E+00 

 

TABLE 2:                         ( )          
               ( )  (    )  (     )  (     )    

   EXACT  ( )  ERROR 

0.0 1.0000000000 1.0000000000 0.0000000000E+00 
0.1 1.0000791667 1.0000793542 1.8749999997E-07 
0.2 1.0013386667 1.0013390833 4.1666666672E-07 
0.3 1.0071685000 1.0071691875 6.8750000004E-07 
0.4 1.0239786667 1.0239796667 9.9999999992E-07 
0.5 1.0619791667 1.0619805208 1.3541666666E-06 
0.6 1.1360800000 1.1360800000 0.0000000000E+00 
0.7 1.2669111667 1.2669111667 0.0000000000E+00 
0.8 1.4819626667 1.4819626667 0.0000000000E+00 
0.9 1.8168445000 1.8168445000 0.0000000000E+00 
1.0 2.3166666667 2.3166666667 0.0000000000E+00 

 
As expected, the scheme exhibits high accuracy in Table 1. This is due to the fact 
that the solution of the differential equation is a polynomial of degree one. This trend 
is also visible in Table 2. This is according to expectation as well;  since the solution 
of the differential equation is a polynomial of degree six and the scheme is  a 6-step 
method of order 8. 
 
Conclusion 
The results of convergence analysis established, theoretically, that the scheme is 
convergent. More so, the results of practical application of the scheme to sample 
problems as exhibited in Tables 1 and 2 goes further to validate the convergence 
analysis. Therefore, it is sufficient to conclude that our 6-step implicit linear multistep 
method of order 8 is accurate, effective, efficient, and acceptable as a numerical 
method for solving initial value problems. 
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