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Abstract  
Analytical study of heat transfer on flow of a nanofluid in a porous medium with heat 
generation is presented. The partial differential equation representing the problem was 
reduced to ordinary differential equation using some similarity transformation variables. The 
transformed equations were solved using the Adomian decomposition method which results 
were compared with existing results in the literatures. A good agreement was established 
between the new method and the existing ones, which shows the reliability of the present 
method. The physical parameters that occurred in the solutions such as magnetic parameter, 
Darcy number, Ekcert number, Prandtl number, Schmdt number were varied to determine 
their respective effects on the flow. It was observed that the Magnetic parameter and 
inverse Darcy number are all reduction agents of the fluid velocity. 
 
Keywords: Adomian decomposition method, Brownian motion, Darcy number, Eckert 

number, Magnetic parameter, Nanofluid. 
 
Introduction 
Nanofluid is a new kind of heat transfer medium, containing nanoparticles (1–100 nm) which 
are uniformly and stably distributed in a base fluid. These distributed nanoparticles, 
generally a metal or metal oxide greatly enhance the thermal conductivity of the nanofluid, 
increases conduction and convection coefficients, allowing for more heat transfer (Yusuf et 
al., 2018). 
 
Vasu and Manish (2015) studied the problem of two-dimensional transient hydrodynamic 
boundary-layer flow of an incompressible Newtonian nanofluid past a cone and plate with 
constant boundary conditions. Gireesha et al. (2015) introduced a numerical solution for 
hydromagnetic boundary-layer flow and heat transfer past a stretching surface embedded in 
a non-Darcy porous medium with fluid-particle suspension. The unsteady forced convective 
boundary-layer flow of an incompressible non-Newtonian nanofluid over a stretching sheet 
when the sheet is stretched in its own plane is investigated by Gorla and Vasu (2016). Gorla 
et al. (2016) investigated the transient mixed convective boundary-layer flow of an 
incompressible non-Newtonian quiescent nanofluid adjacent to a vertical stretching surface. 
The unsteady flow and heat transfer of a nanofluid over a contracting cylinder was studied 
by Zaimi et al. (2014). Srinivasacharya and Surender (2014) studied the effects of thermal 
and mass stratification on natural convection boundary-layer flow over a vertical plate 
embedded in a porous medium saturated by a nanofluid.  
 
An analytical study of heat transfer on flow of a nanofluid in a porous medium with heat 
generation using the adomian decomposition method is presented, which is new in the 
literature.  
 
Problem Formulation 
Considering two-dimensional, incompressible viscous flow of a water-based nanofluid past 
over a stretching sheet. The sheet stretches with a velocity ax, where a is a constant and x 
is the coordinate measured along the stretching surface. The fluid flow at y=0, where y is 
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the coordinate normal to the surface. The surface temperature is taken as wT  and at larger 

values, it is taken as T . The nanoparticle concentration wC is assumed constant on the 

stretching surface and C at larger values of y. Following the formulation in Mabood and 

Mastroberardino (2015) in a porous medium with heat generation, the governing equations 
of continuity, momentum, temperature, and nanoparticle concentration are written as: 
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where velocity along x and y  axes are u and v respectively, f  is the density of the base 

fluid,   is the kinematic viscosity, σ is the electrical conductivity,  is the heat diffusivity, 

0B external magnetic field, pC  is the specific heat capacity at constant pressure, BD  is the  

Brownian diffusion coefficient, TD  is the thermopheric diffusion coefficient and 
( )

( )
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f

c
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  is 

the ratio between the effective heat capacity of the fluid with 0k as permeability, Q is heat 

generation,   is porousity. 

 
In other to reduce the PDEs into ODEs, the following similarity transformational variables are 
defined as follows: 
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where ,  f  ,    ,     are the dimensionless fluid distance, velocity, temperature, and 

nanoparticle concentrations. 
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Introducing equation (7) into equations (1) to (5), the PDEs reduces to  
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Are Magnetic parameter, inverse Darcy number, Prandtl number, Brownian motion, 
thermophoresis parameter, Eckert number, Heat generation and Schmidt number.   
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Method of Solution 
The method of Adomian (1994) is employ to obtain the solution of problem (8) by letting 
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Introducing the operators into equations (9), we have 
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Introducing the Adomian polynomials into (10) we have 
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In order to obtain the solution to problem (8), the initial guess for (13) which satisfied the 
initial condition, are taking as: 
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Using maple18 to evaluate the integrals we have the final solutions as: 
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Note: The infinity was observed at 3   

 
Results and Discussion 
The results obtained from the above section are presented and discussed in this section.  
Table 1 show the comparison of the present method with the existing method in the 
literature and a good agreement is observed among the methods. 
 
 
 
 
 
 
 
 



Journal of Science, Technology, Mathematics and Education (JOSTMED), 16(3), September, 2020 

54 
 

Table 4.1: Comparison of values of  / / 0f  with existing solutions 

M Present Results 
Mabood and 

Mastroberardino (2015) 
Xu and Lee 

(2013) 

0 - -1.000008 - 

1 1.3305610 1.4142135 1.41421 

5 2.384890 2.4494897 2.4494 

10 3.267599 3.3166247 3.3166 

50 7.118200 7.1414284 7.1414 

100 10.03333 10.049875 10.0498 

500 22.375586 22.383029 22.38302 

1000 31.633317 31.638584   

 

 
Figure 1: Variation of inverse Darcy number on velocity         Figure 2: Variation of inverse Darcy number on  
                                  temperature 

 
Figure 3: Variation of inverse Darcy number on concentration     Figure 4: Variation of Magnetic number on  
            velocity 

 
Figure 5: Variation of magnetic number on temperature       Figure 6: Variation of magnetic number on  
                  concentration 
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Figure 7: Variation of Prandtl number on temperature    Figure 8: Variation of Brownian motion on temperature 
  

 
Figure 9: Variation of Brownian motion on concentration   Figure 10: Variation of thermopheric parameter on  
                  temperature 

 
Figure 11: Variation of thermopheric parameter on   Figure 12: Variation of thermopheric parameter   
                   on concentration         on concentration  

 
Figure 13: Variation of Schmdt number on concentration    Figure 14: Variation of heat generation parameter on  
                   temperature 
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Figure 1 to 3 present the variation of inverse Darcy number on velocity, temperature and 
concentration profile. As the inverse Darcy number increases, velocity profile is observed to 
be a reduction agent while the temperature and concentration appear as increasing agents. 
Figure 4 to 6 display the variation of magnetic number on velocity, temperature and 
concentration profile. As the magnetic increases, velocity profile is observed to drop due to 
drag like force. The temperature and concentration appear to be increasing as the magnetic 
parameter is enhance. 
 
Figure 7 show the variation of Prandtl number on the fluid temperature. The temperature of 
the fluid drops as the Prandtl number increases which can be use to regulate the fluid 
temperature. 
 
Figures 8 to 9 are the graphs showing the variation of Brownian motion on temperature and 
concentration respectively. As the Brownian motion increases, the fluid temperature rises 
slightly and concentration also rises. On the concentration profile, as the concentration 

approaches free stream   2.5   no changes was observed. 

 
Figure 10 to 11 depict the variation of thermopheric parameter on temperature and 
concentration profiles. As the parameter rises, temperature and concentration profile all 
increases. No change was observed on concentration profile at 2.5  . 

 
Figure 12 show the variation of Eckert number on fluid temperature. It is seen that as the 
Eckert number increases the temperature profile also increases. This shows that the fluid 
temperature boundary thickness thickens as the fluid becomes more viscous. 
 
Figure 13 present the variation of Schmdt number on concentration profile. It shows that 
the fluid concentration reduces as Schmdt number is enhanced.  
 
Figure 14 show the effects of heat generation on the temperature profile. As the heat 
generation number increase, the fluid temperature continue to increase.  
 
Conclusion 
This work presents the analytical study of heat transfer on flow of a nanofluid in a porous 
medium with heat generation. The partial differential equations representing the problem 
were reduced to ordinary differential equation using some similarity transformation variables. 
The transformed equations were solved using the Adomian decomposition method which 
results were compared with existing results in the literatures. A good agreement was 
established between the new method and the existing ones, which depicts the efficiency of 
the present method. The infinity was observed at 3  . The physical parameters that 

occurred in the solutions such as magnetic parameter, Darcy number, Ekcert number, Prandtl 
number, Schmdt number were varied to determine their respective effects on the flow. It 
was observe that the Magnetic parameter and inverse Darcy number are all reduction agents 
of the fluid velocity. The results presented are real and applicable in various aspects of 
industrial activities that involved the movement of heat energy from one process stream to 
another. 
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