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Abstract 
This paper investigates MHD casson fluid flow over an exponentially stretching sheet. The 
governing partial differential equations were reduced to ordinary differential equations using 
similarity transformation. The reduced non-linear ordinary differential equations were solved 
analytically using iteration perturbation method and the results obtained were presented 
graphically. It was observed that casson, magnetic, unsteadiness, permeability and porosity 
parameters decrease the velocity profiles while ratio parameter, renold number, thermal and 
solutal grash of numbers enhance the velocity profiles. Also, magnetic parameter, radiative 
parameter, heat source, dufour number, chemical reaction and activation energy parameters 
enhance the temperature profile while prandtl number decreases the temperature profile. Soret 
number increase the concentration profile while chemical reaction parameter, activation energy 
parameter and schmidtl number decrease the concentration profile. 

Keywords:  Casson fluid, Dufour number, Iteration Perturbation Method, MHD, Non-
Newtonian, Radiative Heat Flux, Soret number, Stretching sheet 

Introduction  
The study of real-life problems dealing with flow models of non-Newtonian fluids has received a 
special attention due to their several possible applications in engineering and industries. Due to 
the increasing significance of non – Newtonian fluids in industry, the stretching sheet concept 
has recently extended to fluids obeying non- Newtonian consecutive equation (Kumar & 
Gangadhar, 2015). Casson fluid is one type of non – Newtonian fluid, it can be defined as a 
shear thinning liquid which is supposed to have an infinite viscosity at zero rate of shear and a 
yield stress under which no flow occurs and zero viscosity at an infinite rate of shear (Sharada 
& Shnkar, 2016). Casson fluid is classified as a non-Newtonian fluid due to its rheological 
characteristics. These characteristics show shear stress-strain relationships that are significantly 
different from Newtonian fluid (Makanda et al. 2015). Viscosity is the quality that describes a 
fluid’s resistance to flow. A fluid with high viscosity resists motion, while a fluid with low 
viscosity flows easily. More viscous substances, such as syrup and honey, take longer to pour 
than less viscous substances, such as water.  

Asogwa and Ibe (2020) investigated MHD Casson fluid flow over a permeable stretching sheet 
with heat and mass transfer, the governing equations were transformed into self-similar 
nonlinear Ordinary differential equations and solved numerically using bvp4c MATLAB solver. 
The effect of the involved parameters on Velocity, Temperature, and Concentration, Skin 
friction coefficient, Nusselt number and Sherwood number were studied and numerical results 
were presented graphically and in tabular form. Saidulu and Lakshmi (2016) described the 
boundary layer flow of non-Newtonian Casson fluid accompanied by heat and mass transfer 
towards a porous exponentially stretching sheet with velocity slip and thermal slip conditions in 
presence of thermal radiation, suction/blowing, viscous dissipation, heat source/sink and 
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chemical reaction effects. They neglected the induced magnetic field since the magnetic 
Reynolds number for the flow was assumed to be very small. The governing equations were 
transformed into self-similar nonlinear Ordinary differential equations and solved numerically by 
an implicit finite difference scheme known as the Keller box method. Vedavathi et al. (2016) 
examined chemical reaction, radiation and dufour effects on Casson MHD fluid flow over a 
vertical plate with heat source/sink and the problem was solved numerically using perturbation 
technique. Wahiduzzaman et al. (2014) examined three-dimensional steady MHD casson fluid 
flow past a non-isothermal porous linearly stretching sheet, the governing equations were 
solved numerically using Nactsheim-swigert shooting iteration technique together with runge-
kutta sixth order iteration.  

The aim of this paper is to establish an analytical solution capable of predicting concentration, 
temperature and velocity distributions in a MHD casson fluid flow past a non-isothermal 
exponentially stretching sheet. 

Model Formulation 
Considering three dimensional (3D) transient incompressible flows past a non-isothermal 
exponentially stretching sheet. The sheet is stretched along the xy plane, while the fluid is 

placed along the z - axis; the uniform magnetic field is applied in z  - direction that is 
perpendicular to the flow direction. Here, we assumed that the sheet was stretched with 

velocities   1

0 1




 cteUU L

yx

w
 and    1

0 1




 cteVV L

yx

w

 

along the xy -plane respectively. A heat 

source/sink placed within the flow to allow for heat generation or absorption effects. 

The rheological equation of state for an isotropic flow of casson fluid as stated by (Mohammed 
et al., 2020) can be expressed as: 
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In the above equation ijijee and ije denotes the  thji, components of the deformation rate, 

 is the product of the deformation rate itself, c is the critical value of this product based on 

the non-Newtonian fluid model, B  is the plastic dynamic viscosity of the non-Newtonian fluid 

and zp is the yield stress of the fluid. From (1), we obtain
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The boundary layer equations of three-dimensional incompressible casson fluids flow are given 
as follows 
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Continuity equation: 
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Momentum equations: 
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Energy equation: 
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Species equation: 
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Subject to the initial and boundary conditions: 
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Where ,u ,v and w  are the velocity component in the direction of x , y and z respectively,   is 

the casson fluid parameter,  is the kinematic viscosity, B is the magnetic induction, 0B  is 

constant, K  and  are permeability and the inertia coefficient of porous medium, T is 

temperature, C  is the concentration of the fluid, T and C are the coefficient of volume 

expansion for temperature and concentration differences respectively, 
0C and

0T  are 

constants, 1Q is heat source, 0Q  is constant, Tk  is the thermal diffusivity ratio, h is the 

thermal diffusivity, is the density of the fluid, gg is acceleration due to gravity, is the 

electrical conductivity, hk is the thermal conductivity, pc is the specific heat capacity at constant 

pressure, Sc is the concentration susceptibility, T  is the free stream temperature, mT is the 

mean fluid temperature, mD is the coefficient of mass diffusivity, rk is the chemical reaction rate, 

0r
k is constant,  1EE  is the exothermic/endothermic parameter, 
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eCCTT .  is the Arrhenius function where n is the dimensionless exponent 

fitted rate constant typically lie in the range 11  n , aE is  the activation energy, k  is the 

Boltzmann constant 0k  is constant and the radiative heat flux rq is described by Roseland 

approximation such that 
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 where 1 and 1k are the Stefan Boltzmann constant 

and mean absorption coefficient respectively. We Assume that the differences in temperature 

within the flow is such that 
4T can be expressed as a linear combination of the temperature, we 

expand 
4T in a Taylor series about T . 

Method of Solution 

We now introduce the similarity variables as: 
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The transformed equations with the boundary conditions are: 
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Now, we begin with the initial approximate solution (Olayiwola, 2016; Mohammed et al., 2020): 
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Substituting (15) into (10) to (13) and expressing the solutions in the form: 
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We obtain, 



Journal of Science, Technology, Mathematics and Education (JOSTMED), 16(4), December, 2020 
 
 

119 
 

   

   

 

 

























































































































































c

ccc

c

r

bS

c

q

qqqbSbSbS

bSc

qqbS

qqqqqq

q

qqqqqq

bS

qqqqqq

q

e
bS

q
eq

eqeqeqeqeqeq

pe

e
q

q
eqeq

eqeqeqeqeqeq

pe

qe
q

q
eqeqeqeqpe

q
g

qed

edededededed
pe

q
f

512

50

4948474645

2

44

3

43
4241

2

4039383736

2

35

272

2

262

25

2

232221

2

167

6

2

543

2

21

2

3

545352

334

2326333

3

222222

326222

2

1

1
1

   (17) 

Where,  

 

 

 

     

 
 
   

  ,,,

,
4

,
22

,,,,

,
2

,,,1,,22,

,
2

,,,
2

,
2

,32,2,22,

342414039383743

343534

42

35

2

35

41

12

20
25

2352

33
40

323532

31
39

6356

30
38

5

2

3

28

5

3

3

29
37

53

28

5

2

3

29
36

53

29
35

5

3334

2

33323231
33

30

33
29

3
3

3
3282

2

26
2225272

12

20

1

3

2

82

1

2

2

17

6261

18
26

1

2

2

82
23

1

4

2

82

62

2

61

18

1

3

2

17
22

1

3

2

82

1

2

2

17
21

22

20
222

18

qqqqqqqq
qqbq

q
bSqbbS

bSD

bSqbbS
q

bq

q
q

qqbq

q
q

qqbq

q
q

qqbq

q
q

bq

q

bq

q
q

bq

q

bq

q
q

bq

q
q

b

b
qbSqqMqqqqq

b

q

b

q
q

qb
q

b

q
bq

b

q
Qbq

q

q
qqqq

bq

q

bq

q

bq

q

qqqb

q
q

bq

q
q

bq

q

qqqb

q

bq

q
q

bq

q

bq

q
qq

b

q

b

q
q

cc

cu

cc

c

h









































































































   

 

 

 
 

 

 
,,,,

2
,,

,1,,22,,
2

,,

,,

,,
2

,,,
4

,,42,,3,

,,
2

,,,,
2

,22

,,,,
1

,,

6356

30
38

5

2

3

28

5

3

3

29
37

53

28

5

2

3

29
36

53

29
35

5

3334

2

33323231
33

30
33

29
3

3
3

328

342414039383743

343534

42

2
222

2317
23

822

14
72

3

13
62

2

11
5

2

6

10
42

2

15

4

2

12

3

2

9
32

2

12
23

2

12

2

2

9
1

21

14

321

13

1

8
12

21

7
11

621

5
10

1

4
9

23
87

26
22

522
22

345

5

3

1

2

qqbq

q
q

bq

q

bq

q
q

bq

q

bq

q
q

bq

q
q

b

b
qbSqq

Mqqqqq
b

q

b

q
q

qb
q

b

q
bq

b

q
Qbq

qqqqqqqq
qqbq

q

bq
b

q

b

q
bbq

qb
q

bS

q
d

q

q
d

q

q
d

q

q
d

q

q

q

q

q

q
d

q

q
d

q

q

q

q
d

bSqb

G
q

qqb

G
q

b

q
q

qb

q
q

qqb

q
q

b

q
q

qb
qq

qbq
b

q

b

q
qbbq

b

q

b

q
bq

p

R
b

b

b
q

b

b
q

c

h

c

c

r

r

r





















































































 



Journal of Science, Technology, Mathematics and Education (JOSTMED), 16(4), December, 2020 
 
 

120 
 

     
 
   

 
   

 

   

   
 

 
   

 
     cccc

c

cr

c

c

c

c

cc

c

c

c

c

ccc

c

cc

c

c

c

c

c

cc

cu

cc

bSqqbSqqbSbqbSqqqqqq
qbSq

qSS
q

bSqq

S
q

bSqq

S
qSS

bSbb

S
q

bS

Sbb
SbSSb

Sb
q

SbS

Sb

bbS

Sbb
q

bS

Sbb
qqqqqqqqq

qqbq
q

bSqbbS

bSD

bSqbbS
q

qqbq

q
q

qqbq

q
q






























































































35425352494847465051

33

2

3

50

33

49

22

48473

2

32

3246

2

3

2

2

3

45

2

3

44342414039383743

343534

42

35

2

35

41

2352

33

40

323532

31

39

,,,1,
22

,
22

,,
2

1

,
1

2
,

4
,1

,,,
22

,










 

 
Results and Discussion 
The governing partial differential equations were reduced to ordinary differential equations 
using similarity transformation and the reduced non-linear ordinary differential equations were 
solved using iteration perturbation method. The computations were done for the values of 

 2.0 , 1.0R , 71.0rP , 1.0eR , 22.0cS , 2.0rS , 5.0uD , 1.0
r

G , 1.0
r

G , 

1 , 4.0pK , 1a , Λ = 0.5 , 5.0  , 01.0  , 01.0p , 3062.2b  2.0hQ  and 

5.0M  except otherwise as shown in figures (1 - 26) below. 

 
Figure 1: Effect of  on Velocity Profile  

)(f   

 
Figure 2: Effect of  on Velocity Profile

)(g   
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Figure 3: Effect of R on Temperature 
Profile 

 
Figure 4: Effect of rP on Temperature 

Profile 

 
Figure 5: Effect of M on Velocity Profile 

)(f      

 
Figure 6: Effect of M on Velocity Profile 

)(g    
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Figure 7: Effect of M on Temperature 
Profile )(  
 

 
Figure 8: Effect of pK on Velocity Profile 

)(f   
 

 
Figure 9: Effect of pK on Velocity Profile 

)(g   

 
Figure 10: Effect of a on Velocity Profile 

)(f    
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Figure 11: Effect of a on Velocity Profile 

)(g    

 

 
Figure 12: Effect of eR on Velocity Profile 

)(f    

 
Figure 13: Effect of eR on Velocity Profile 

)(g    

 
Figure 14: Effect of rS on Concentration 

Profile )(  
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Figure 15: Effect of  on Velocity Profile 

)(g    

 
Figure 16: Effect of Λ on Velocity Profile 

)(f   

 
Figure 17: Effect of Λ on Velocity Profile 

)(g    

 
Figure 18: Effect of 

r
G on Velocity Profile 

)(f    
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Figure 19: Effect of 

r
G on Velocity Profile 

)(f    

 
Figure 20: Effect of hQ on Temperature 

Profile )(   

 
Figure 21: Effect of  on Temperature 

Profile )(  
 

 
Figure 22: Effect of  on Concentration 

Profile )(   
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Figure 23: Effect of  on Temperature 

Profile )(  
 

 
Figure 24: Effect of  on Concentration 

Profile )(   

 

 
Figure 25: Effect of cS on Concentration 

Profile )(  

 
 

Figure 26: Effect of uD on Temperature 

Profile )(  
 
Figures 1 and 2 show the velocity profiles against the similarity variable   for different values 

of casson parameter. It was observed from these figures that as casson parameter increases, 
the fluid velocity distribution decreases inside the boundary layer. Figure 3 and 4 depicts the 
effects of radiation parameter and prandtl number on the temperature profile. It was observed 
that increase in radiation parameter increases the temperature profile while increase in prandtl 
number decreases the temperature profile. In figures 5 to 7, it was observed that increase in 
magnetic parameter decreases the velocity profiles and enhance the temperature profile. From 
figures 8 to 11, we observed that increase in permeability and unsteadiness parameters lead to 

decrease in velocity profiles. Figure 12 to 14 shows that as local renold number eR  increases, 
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the velocity profiles increases while soret number rS enhances the concentration profile as 

depicted in figure 14. Figures 15 to 19, shows that increase in ratio parameter increase the 
velocity profile, increase in porosity parameter decrease the velocity profiles and increase in 
thermal and solutal grashof numbers enhances the velocity profile due to thermal and solutal 
buoyancy effects. From figures 20 to 26 it was observed that increase in heat source 
parameter, dufour number, chemical reaction and activation energy parameters enhance the 
temperature profile while the concentration profile decreases with increase in chemical reaction 
parameter, activation energy parameter and schmidtl number. 
 
Conclusion  
Based on the above results it was observed that:  

i. Casson, magnetic, unsteadiness, permeability and porosity parameters decrease the 
velocity profiles respectively 

ii. Local Reynold number, ratio parameter, thermal and solutal grashof numbers enhance 
the velocity profiles 

iii. Magnetic parameter, radiative parameter, heat source, dufour number, chemical 
reaction and activation energy parameters enhance the temperature profile  

iv. Prandtl number decreases the temperature profile 
v. Soret number increases the concentration profile  
vi. Chemical reaction parameter, activation energy parameter and schmidtl number 

decrease the concentration profile 
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