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Abstract 
Item response theory (IRT) is a family of mathematical models that attempt to explain the 
relationship between latent traits and their manifestations. They are widely used in 
education to calibrate and evaluate items in tests, questionnaires, and similar instructions, 
measuring abilities, attitudes, or other variables. The most frequent method for estimating 
latent traits called Maximum Likelihood (ML) can either fail to converge or produce biased 
estimates in complex latent traits models due to co-linearity of explanatory variables. 
Bayesian estimation approach provides a better alternative to ML (frequentist) for IRT in this 
case. This study compared the Bayesian against ML estimators for IRT models. The same 
data set were analysed using both Bayesian and ML estimations. The findings suggest that 
ML method is a reasonable choice for one and two-parameter logistic IRT models while 
Bayesian estimation is more appropriate for three-parameter IRT to circumvent non-
convergence of ML estimation procedure. 
 
Keywords: traits, Bayesian estimation, maximum likelihood, items   
 
Introduction 
The primary IRT models parameters estimation in frequentist approach was Joint Maximum 
Likelihood Estimation (JMLE) whereby unknown candidates’ ability is considered as fixed, as 
in the case of analysis of variance, and has to be estimated together with item parameters, 
and ability parameters (Paek & Cole, 2020). Both item and ability parameters were to be 
estimated simultaneously thereby the maximum likelihood estimates were not consistent as 
the sample sizes increases. Except for one parameter model in equation (17) where a 
sufficient statistic was available for ability parameters which make it possible for the use of 
specialized procedure called conditional maximum estimation, therefore, a more efficient 
estimation procedure is needed for two and three parameter logistic models to avoid 
problem of inconsistent estimation of item parameters. As a result of shortcoming in JMLE, 
Bock and Lieberman (1970) came up with Marginal Maximum Likelihood Estimation (MMLE) 
method to remove effect of ability parameter which was considered as nuisance in JMLE by 
assuming that these values constitute a random sample from a population distribution and 
then integrate over the ability distribution. Unfortunately, the MMLE method developed 
caused a computational task which was only feasible for small sample size test. A 
reformation of MMLE was done at instance of Expectation and Maximization (EM) Algorithm 
by Bock and Aitkin (1981) and was implemented in BILOG computer program (Mislevy & 
Bock, 1984).  

In this reformation, Bayesian concepts of prior and posterior distribution were used, and the 
underlying mathematics was higher than JMLE which was both theoretically acceptable and 
computationally feasible. The likelihood function, derivatives, and likelihood equations are 
developed for case(s) where abilities are observed along with the item responses. For 
individual item response data, the model is defined as: 
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Where candidate              , Items             ,     is the discrimination parameter for 

item  ,       is the item difficulty parameter for item         is the guessing parameter for item 

        is the latent ability for candidate        (     Prob           is the probability  of 

correct response to item   from the candidate with ability    defined for a given item 

response theory model. 
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Where                      
             is a response from candidate   to item     and    is 

a matrix of true item parameter.  
 
The total likelihood of the observed item responses in equation (3) yields 
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Under ML, the parameters estimates are the item parameter values that maximize the 
likelihood equation (3) given the observed responses. This is obtained by setting the first 
derivatives of the log- likelihood equal zero (Lord, 1980). Solving the resulting equations 
simultaneously, for the item estimates yields 
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Where     
              

            
   assuming    are known, the three-parameter for the      items are 

estimated simultaneously using equations (5), and (6) as a system of equations. When 
responses are grouped into a finite number of known ability levels, the proportion of correct 

response at ability level    is given by     
   

   
   and        

       

   
  where       is the 

number of candidates in the group that have ability             gives correct responses and  

        gives incorrect responses.  Assuming     is binomially distributed with  (   )        

and variance 
      

   
   the likelihood function of the responses observed on   items is 

administered to the group of candidates with abilities                 where    the number 

of groups, by conditioning on the item parameters, we have equation (7) 
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Taking the first derivatives of equation (8) with respect to each of the item parameters and 
solved the resulting equations produce equations (9). 
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    is as defined in equation (6) and system of equations in (9) is the likelihood function for 

group responses for JMLE. 
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In Bayesian modelling framework, model parameters are treated as random variables unlike 
frequentist approach, and have its prior distributions which described uncertainty about the 
true values of the parameters before observing the responses at separate levels for the 
purpose of accounting for various sources of information. The model comprises of likelihood 
model for observed responses which described data generating process as a function of 
unknown parameters, and the likelihood model present the density of the responses which 
is conditional on the model parameters (Fox, 2010). 

Let           denotes information about    (student's ability) that is observed from response 

data      which is called likelihood function because our interest is usually on the distribution 

of parameters     based on the observed data. Candidate’s ability    on our response data is 
presented in equation (10). 
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       is the posterior distribution of ability   based on the prior beliefs, and sample 

information. Equation (10) represents Bayes theorem and equation (11) is a product of 
likelihood        and prior.  In Bayesian statistics,  
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Where         is the probability density for      given    we assume     has a probability 

distribution             which is called prior distribution. We apply Bayes theorem in 

equation (10) to determine posterior distribution of   given     since    and    are random. 
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Where           is known as the marginal distribution of       and  

     ∫                        (14) 

Equation (14) does not depend on the parameter of interest     therefore can be reduced to 

                           (15) 

Equation (15) can be written a more computational friendly as 
ln       }          ln     }           (16)  
Where constant   ln     } and is assume to be finite for statistically valid analysis. 

 
Every MCMC algorithm generates values from a transition kernel in such a way that the 
draws from that kernel converge to a pre-specified intended distribution; this simulates a 
Markov chain with the target distribution as stationary or equilibrium distribution of the 
chain. The acceptance rate of the chain and the degree of autocorrelation in the generated 
sample are two yardsticks to measure the efficiency of MCMC. Blocking of model parameters 
into two or more blocks such that MH updates are applied to each block separately in the 
order to achieve an effective solution are necessary however, a check for convergence of 
MCMC is a very important step because a valid Bayesian inference is based on the 
convergence of Markov chain by MCMC sample which is drawn from the desired posterior 
distribution. The diagnostic usually entails checking for necessary conditions for convergence 
(Gelman, 2014).  

 
Aim and Objectives 
This paper sought to demonstrate advantage of Bayesian over frequentist (maximum 
likelihood method) IRT to the test developers, analysts, and assessors in helping 
practitioners to determine instances in which Bayesian method might be better preferred to 
classical IRT. Therefore, the stated objectives are: 
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i. To determine the most suitable method for one, two, and three parameter logistic model. 
ii. Circumvent non-convergences in three parameter logistic model. 
 
Materials and Methods 
Materials 
The item comprises of a compulsory 35 statistics multiple choice items which were scored as 

  for correct response and 0 for each of the three distractors that were administered to 403 
undergraduate students. Stata 16 SE on window 7 was used for the analysis. Both maximum 
likelihood method and MCMC algorithms for 15,000 iterations with first 5,000 as a burn-in 
yields results in Tables 1, 2, and 3 which contained frequentist IRT model estimates, and the 
posterior summaries of item properties for items 8, 11, 29, 7, 5, and 34 were presented on 
the basis of their performances with one, two, and three-parameter logistic models 
respectively. 

Methods 
The goal of one-parameter logistic model is to estimate a common discrimination of the 
items and their individual difficulties. Equation (17) as IRT model describes test items in 

terms of only how hard an item is perceived to achieve       probability of correct response 
at a given ability level (Lord, 1968; Birnbaum, 1968).  
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    is a common item discrimination parameter,      is the item difficulty parameter for item, 

and      is the student     ability,                  
The likelihood of equation (17) has a generalized linear regression form of equation (18). 
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Where        and      were as defined in equation (17). By re-parameterization, the 

discrimination parameter     can be absorbed into    and      so that equation (18) yields 
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Equations (3) through (6) were used to get our frequentist estimates.  
A Bayesian formulation of equation (17) requires prior specifications for   , and     ̅ as  

                                                                  

  ̅        
}    (20)  

The random effects are assigned zero mean normal prior with       and the parameter     is 
assigned a non-informative inverse gamma prior with shape 0.01 and, size 0.01. Due to the 
large number of random effects, we exclude them from simulation results. 

Two-parameter logistic model is viewed as a latent trait model in which item characteristic 
curve (ICC) is of two-parameters. It estimates varying items discrimination          

         that discriminate different items in relation to ability level near the infection point 

of an ICC, and varying item difficulty       ; thereby describes test items in terms of two 

parameters. The probability that candidate      with ability    endorsed an item     correctly is 

given as 

   (            )   
 

           

    
                   (21) 

    discriminating parameter for item      and         , and    were as defined in equation 

(17). 
Bayesian modelling of equation (21) required the following prior specifications: 
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Where          , and    were as defined in equation (21).  

In the two-parameter logistic model, a lower asymptote (pseudo-guessing) parameter 
                 is introduced into the model in equation (21) to produce a three-

parameter logistic model equation (23) which accounts for variability in item discriminating 
parameter, meaning that a candidate at the lower trait level have a non-zero probability of 

endorsing item correctly (Wright & Stone, 1979). The probability that student     with ability 
      endorsed item     correctly is given as 

   (   )              
 

           

    
               (23) 

Such that     is guessing parameter,         , and      were as defined in equation (21). 

The guessing parameter may be difficult to estimate using maximum likelihood; it does not 
converge easily. Instead of using likelihood (logit), we use likelihood (dbernoulli ()) to model 
the probability of success of a Bernoulli outcome directly as we have in equation (24). 
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Bayesian modelling of equation (24) required the following prior specifications 
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These hyper prior distributions are specified for hyper-parameters 
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Mathematical Theory behind Prior and Hyper Prior Selection 
1. If       N (    ),           with    known, and                  
then            

 
 ) is the prior density for      and posterior density 
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Equation (27) is a conjugate prior of normal data when its variance is known. 

2. If             has a normal/inverse-gamma prior density with parameters             
and   

   the posterior density of    is also a normal/inverse-gamma density with parameters  

           and   
   where      
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Equation (28) is a conjugate prior of normal data when variance is unknown. 

3. If     lognormal               . Then the probability density function of log-normal 

random variable     is   
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   is scale and   is location parameter.  The likelihood function is  
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We assume that location parameter   follows the normal distribution with hyper-parameters 

    and      and the prior distribution is  
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Therefore, posterior distribution of   given data    is 
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Results and Discussions 
Items 8 and 11 were identified by one-parameter logistic model equation (17) as the most 
and easiest difficult items respectively, items 29 and 7 were identified by two-parameter 
logistic model of equation (21) as the most and least discriminating items respectively while 
items 5 and 34 were identified by three-parameter logistic model equation (23) as the most 
and least pseudo-guessing items respectively. Therefore, these items were selected for 
discussions due to their identification by respective models. 

A conditional maximum likelihood estimation and Bayesian estimation framework of equation 
(17) give rise to results in Table 1 which clearly show varying items difficulty given that 
discrimination is held constant, standard error of estimates, and confidence interval of the 
estimates based on frequentist approach. On the other hand, the mean of posterior 
distribution for individual item, standard error of the estimates, Monte Carlo standard error 

which measured variations in simulation process, median, and       credible interval for 
Bayesian framework were provided for purpose of comparing the two approaches. 

Table 1: Comparisons of Frequentist and Bayesian Parameters Estimates in  
               One-parameter Logistic Model  

Item Method Par Std Dev MCSE Median 95% Conf/Cred Int 

Disc Frequentist 0.6314 0.0335   0.5653 0.6965 
Bayesian 0.6323 0.0339 0.0017 0.6314 0.5660 0.6982 

8 Frequentist 2.4988 0.2466   2.0154 2.9821 
Bayesian 2.5108 0.2486 0.0083 2.4988 2.0430 3.0196 

7 Frequentist 0.8455 0.1817   0.4893 1.2017 
Bayesian 0.8482 0.1829 0.0060 0.8447 0.5030 1.2063 

29 Frequentist -1.6034 0.2034   -2.0032 -1.2036 
Bayesian -1.6055 0.2055 0.0068 -1.6034 -2.0173 -1.2105 

5 Frequentist -3.2486 0.2935   -3.8238 -2.6734 
Bayesian -3.2461 0.2957 0.0099 -3.2329 -3.8649 -2.7028 

34 Frequentist -4.7140 0.4200   -5.5370 -3.8908 
Bayesian -4.7181 0.4210 0.0132 -4.6991 -5.5972 -3.9443 

11 Frequentist -5.0360 0.4556   -5.9329 -4.1471 
Bayesian -5.0390 0.4614 0.0145 -5.0194 -5.9901 -4.1953 

Var Hyper 0.4010 0.0429 0.0021 0.3986 0.3204 0.4875 

 
Despite the fact that impact of prior is controlled by introduction of a non-information 

inverse gamma hyper-prior for     , estimates from both approaches are not significantly 
different from each other (lead to same conclusion). The results of these approaches 
affirmed that both Frequentist and Bayesian methods yield close results and lead to same 
conclusions, the most difficult item as identified by both methods is 8 (with difficulty indices 
2.4988 in Frequentist, 2.5108 in Bayesian, standard error of 0.2466 in Frequentist as against 
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0.2486 in Bayesian, and similar confidence/credible intervals) follows by item 7 in that order 
as displayed in Table 1.  
 
On the two-parameter logistic model, estimated item properties of the model presented in 
equation (21) using both maximum likelihood and Bayesian methods where items are 
arranged in descending order of discriminatory power of individual item are presented in 

Table 2. The methods identified item      as most discriminatory in terms of classifying 
students into different ability levels (discriminating indices of 1.6451 in Frequentist as 
against 1.4729 in Bayesian, difficulty indices of -0.8414 in Frequentist as against -0.8845 in 
Bayesian meaning moderately easy item),  
 
Table 2: Comparisons of Frequentist and Bayesian Parameters Estimate of  
              Two-parameter Logistic Model 

Item  Method Par Mean Std Dev MCSE Median 95% Conf/Cred Int 

29 Freq Disc 1.6451 0.2655   1.1248 2.1654 
Bayesian Disc 1.4729 0.2511 0.0205 1.4584 1.0093 2.0126 
Freq Diff -0.8414 0.1162   -1.0692 -0.6136 
Bayesian Diff -0.8845 0.1353 0.0110 -0.8785 -1.1693 -0.6668 

34 Freq Disc 1.4478 0.3701   0.7224 1.1731 
Bayesian Disc 1.2607 0.2994 0.0335 1.2300 0.7401 1.9265 
Freq Diff -2.4717 0.4329   -4.1313 -2.0375 
Bayesian Diff -1.9039 0.3677 0.03356 -1.9136 -2.6433 -1.1327 

11 Freq Disc 1.1397 0.3498   0.6569 1.7669 
Bayesian Disc 1.1016 0.2655 0.0256 1.0675 0.6569 1.7669 
Freq Diff -3.0927 0.7323   -4.5280 -1.6573 
Bayesian Diff -1.9356 0.5041 0.0429 -1.9638 -2.8008 -0.7904 

5 Freq Disc 0.5727 0.1935   0.1935 0.9520 
Bayesian Disc 0.6361 0.1285 0.0113 0.6279 0.4243 0.9167 
Freq Diff -3.5352 1.0990   -5.6892 -1.3813 
Bayesian Diff -0.1297 0.7173 0.0868 -0.0396 -1.8174 1.0727 

7 Freq Disc 0.0570 0.1194   -0.1771 0.2911 
Bayesian Disc 0.2679 0.0733 0.0039 0.2615 0.1429 0.4249 
Freq Diff 8.6179 18.112   -26.8812 44.117 
Bayesian Diff 2.6543 0.4918 0.0175 2.5901 1.8941 3.8511 

Hyper     -0.4357 0.1070 0.0047 -0.4368 -0.6443 -0.2166 
     0.3053 0.0967 0.0051 0.2905 0.1590 0.5408 
   -0.8730 0.3080 0.0114 -0.8799 -1.4618 -0.2511 

     3.1800 0.8983 0.0468 3.0282 1.8167 5.2871 

 

follows by item 34 as displayed in Table 2 in that order while item      is perceived as the 

least with a questionable difficulty index of        , too high standard error, and poor 
discriminatory power as against Bayesian estimates. This model suggests that this item is 
unfit to be used except replaced, or a total item moderation is done.  The hyper-parameters 
that controlled the effect of priors on our data were also displayed. 

Attempt to determine the three item properties of the model position in equation (23) using 
Frequentist method encountered serious convergence problem which may affect statistical 
inferences except one of the item properties is constrained. Instead of modelling this data 
with logit link, we modelled directly with Bernoulli link as we have in equation (24) and the 
results are presented in Table 3. 
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Table 3: Comparisons of Frequentist and Bayesian Parameters Estimate of Three- 
               parameter Logistic Model  

Item Method Par Mean Std Dev MCSE Median 95% Conf/Cred Int 

5 Freq Guess 0.7757 0.0545   0.6690 0.8824 
Bayesian Guess 0.6968 0.1166 0.01433 0.7241 0.3789 0.8380 
Freq Diff 0.3014 0.4981   -0.6749 1.2777 
Bayesian Diff -0.1190 0.7663 0.0906 0.0111 -1.9014 1.1831 
Bayesian Disc 1.3945 0.4805 0.0441 1.3141 0.6972 2.5416 

7 Freq Guess 0.3643 0.0320   0.3016 0.4269 
Bayesian Guess 0.3491 0.0334 0.0016 0.3512 0.2834 0.4124 
Freq Diff 3.3008 1.0879   1.1686 5.4331 
Bayesian Diff 2.5990 0.4869 0.0196 2.5472 1.8155 3.6873 
Bayesian Disc 1.6123 0.5335 0.0402 1.5190 0.8676 2.9412 

8 Freq Guess 0.0966 0.0259   0.0458 0.1473 
Bayesian Guess 0.1663 0.0207 0.0008 0.1644 0.1300 0.2084 
Freq Diff 2.0544 0.2449   1.5744 2.5344 
Bayesian Diff 2.0182 0.2819 0.0172 1.9820 1.5366 2.6644 
Bayesian Disc 2.0182 0.2819 0.0172 1.9820 1.5366 2.6644 

11 Freq Guess 0.0033 0.0440   -0.0859 0.0865 
Bayesian Guess 0.5073 0.1579 0.0131 0.4862 0.2485 0.8479 
Freq Diff -0.9016 0.2948   -1.4793 -0.3239 
Bayesian Diff -1.8839 0.5539 0.0482 -1.9497 -2.8757 -0.5660 
Bayesian Disc 1.4916 0.3272 0.0236 1.4497 0.9295 2.2747 

29 Freq Guess 0.0064 0.2061   -0.3976 0.4103 
Bayesian Guess 0.3151 0.0607 0.0034 0.3121 0.2059 0.4383 
Freq Diff -0.9016 0.2948   -1.4793 -0.3239 
Bayesian Diff -0.3126 0.1803 0.0146 -0.3242 -0.6461 0.0728 
Bayesian Disc 1.4729 0.2511 0.0205 1.4584 1.0093 2.0126 

34 
 
 

Freq Guess 0.0002 0.0013   -0.0025 0.0025 
Bayesian Guess 0.4440 0.1251 0.0086 0.4288 0.2422 0.7179 
Freq Diff -2.5885 0.1781   -2.9376 -2.2395 
Bayesian Diff -1.8169 0.4207 0.0290 -1.8300 -2.6341 -0.9259 
Bayesian Disc 1.5384 0.3016 0.0219 1.5212 1.0249 2.1941 

 Freq Disc 1.3742 Constrained 
Hyper Bayesian     0.3580 0.0893 0.0070 0.3595 0.1782 0.5267 
Hyper Bayesian      0.1006 0.0308 0.0019 0.0944 0.0569 0.1750 
Hyper Bayesian     0.2576 0.1772 0.0072 0.2612 0.1045 0.6046 
Hyper Bayesian      1.2236 0.3226 0.0226 1.1767 0.7362 1.9874 

 
The results of both methods are presented in Table 3 for clear comparisons. Only two item 
properties can be estimated (guessing and difficulty indices) for individual item with its 

associated standard error and        confidence interval were estimated while discriminatory 
index was constrained to circumvent non-convergence of log-likelihood using Frequentist 
framework. Bayesian method on the other hand allows the estimation of all the item 
properties (guessing, difficulty, and discriminatory indices) at the same time without 
convergence problems. Posterior means, medians, standard error of individual estimate, 
Monte Carlo standard error which assesses the variation of Monte Carlo Markov Chain 
simulation of our estimate, and       credible interval were also presented. Hyper 
parameters which reduced effect of prior on the observed data are also displayed in Table 3.   

A more careful comparison of guessing indices from both approaches show very close 
results with frequentist have lower standard error of estimated parameters (guessing and 
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difficulty) but estimation of varying third parameter (discriminatory index) spark non-
convergence of the log-likelihood hence, one of these parameters need to be constrained in 
frequentist.  For item 5 with pseudo-guessing indices of 0.7757 in Frequentist as against 
0.6968 in Bayesian, Frequentist had a better standard error of 0.0455 as against 0.1166 in 
Bayesian but Frequentist is limited for its inability to estimate all the three item properties at 
a time. However, Bayesian framework provided more parsimonious estimates for all the item 
properties without constrained any item property and present credible intervals that capture 

our current uncertainty in the location o      percent values and is interpreted as 
probabilistic statement about the parameter.  

It has been discovered that when the interest of test developers or administrators is only to 
identify or describe how hard or easy each of the items that make up test are perceived to 

achieve       probability of correct response at a given ability level, the model illustrated in 
equation (17) yielded results in Table 1 which affirmed that frequentist (conditional 
maximum Likelihood) method   converges and produced least standard errors compared to 
Bayesian method. Both approaches lead to same conclusions, and here, confidence interval 
from frequentist approach and credible interval from Bayesian are statistically the same.  

However, when test analyst is much interested in how each item discriminate students into 
different ability levels, two parameters logistic IRT model positioned in equation (21) is 
used. The two approaches used in estimating these item properties produced the same 
results as shown in Table 2 and this suggests that either of the methods can be used to 
estimate parameters of interest but Bayesian two-parameter logistic IRT model produced 
least standard error with a better credible interval.  

Test administrators interested in estimating varying three item properties employed IRT 
model displayed in equation (23). The estimates of this model on basis of frequentist and 
Bayesian methods are presented in Table 3.  Non-convergence problem was encountered 
when trying to estimate varied all the three item properties using frequentist approach. Just 
to circumvent non-convergence of log-likelihood here, we have to constrain discrimination 
parameter for all the items. Bayesian framework provided the needed alternative method of 
estimating all the item properties. Standard error of the estimates, median and posterior 
means which were compromised between the prior and likelihood were presented, Monte 
Carlo standard error fall within the acceptable range and       credible interval. All these 
attested to the fact that to overcome serious problem of non-convergence when low ability 
students having non-zero probability of endorsing item correctly, Bayesian approach will be 
most appropriate.    

Conclusions 
This work presents basis for examination bodies, test developers, and analysts in taking 
right decisions on the method of analysis to be employed when confronted with modelling 
latent traits which cannot be observed directly. Methods to be used here will be a function 
of particular item response theory models under considerations as presented as follows.   

1.  Either Bayesian or frequentist approach may be used when our interest is to describe 
items that made up a test in terms of one item property (that is difficulty) or in terms of two 
varying item; properties (discriminations and difficulty). Both methods will lead to same 
conclusions but Bayesian produced smaller standard error. 

2. Bayesian method is to be used when our intention to estimate varying three item 
properties to circumvent non-convergence of log-likelihood. 
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3. Suitable (conjugate) prior must be specified for our parameters of interest to obtained 
valid estimate and conjugate hyper-prior must be considered to reduce effect of prior on our 
estimates. 
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