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Abstract

A mathematical model that described one-dimensional cotransport of colloids in riverbank
filtration system, taking into account decay rate of virus is presented. The governing
equations were solved analytically using parameter expanding method and eigenfunction
expansion techniques, while the results obtained were presented graphically and discussed.
The results obtained revealed that the virus concentration increases with increase in the
value of decay rate and later decreases. Also, the hydrodynamic dispersion coefficient
decreases both the concentration of virus and dissolved organic matter (DOM).
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Introduction

It has been reported by Kallioras et a/. (2006) that aquifers occupy 2.5% of freshwater on
earth and only less than 1% of Earth’s water can be found in rivers, lakes, or atmosphere
layers. Many countries depend heavily on river water as a source of agricultural and drinking
water purposes despite this small percentage (Ad de et al., 2012). Riverbank filtration (RBF)
is @ natural technology that is use to remove pathogens, natural organic matter, dissolve
organic matter (DOM) etc in the river water as the water moves to the aquifer through the
riverbed. Singh (2017) reported that the biggest challenge in 21* century is water security
for every individual. The demand and the degree of contamination in raw water sources all
around the world have significantly increased as a result of increase in population growth,
agricultural and industrial activities.

However, the presence of contaminants in rivers may cause detrimental effects on the
environment, human health and crop productivity (Schwarzenbach et al, 2010).
Consequently, different diseases that can be fatal for individuals may occur. For example,
the usage of agriculture fertilizers can cause contamination of river water by nitrates
chemicals (Kowal & Polik, 1987). These compounds have harmful effects on human health,
especially for infants, young children, elderly individuals, pregnant and nursing women (U.S.
Environmental Protection Agency, 2009). For infants, the nitrate compounds can cause blue
baby syndrome where the blood cannot properly carry oxygen (U.S. Environmental
Protection Agency, 2009). This situation leads to infant death if there is no immediate
medical attention (Schwarzenbach et a/, 2010). The main symptom of the presence of
pathogens in poor quality water is diarrhea. It causes 1.8 million deaths every year (WHO,
2006). Most of the enteric pathogens that causes gastrointestinal illnesses, do not live
indefinitely in water. Hence, the concentration of these pathogens in wastewater determines
the types of disease in the community (WHO, 2017). The overall design of RBF systems
requires detailed hydrogeological site investigation, knowledge about the hydrological
characteristics of the catchment as well as defining the catchment area (Grischek et al.,
2002).
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Olayiwola et al. (2013) presented a mathematical study of contaminant transport with first
order decay and time-dependent source concentration in an aquifer. The results obtained
show that contaminant concentration decreases along spatial direction as initial dispersion
coefficient increases. Exact solution of contaminant transport for pumping well in riverbank
filtration system, taking into account a constant pumping rate was investigated using
Green'’s function by Mustafa et a/. (2016).

Shende & Chau (2019) developed a model combined with hydrogeological data to determine
the permissible limit of fecal coliform in water during RBF. They combined an analytical
solution of water flow and contaminant transport from a stream to an infiltration gallery.
From their study they observed that the analytical element method (AEM) based LIFI-
PATRAM model is capable of determining the optimal location and therefore can be applied
to various field problems by incorporating different properties of the aquifer and source
water quality for sustainable management of RBF. It was also observed that the safe
distance of an infiltration gallery is governed by the logistic function which can be effectively
applied to compute the desired log cycle reduction in the concentration of pathogens during
RBF system. Das et al. (2017) developed two analytical models for one-dimensional solute
transport in the semi-infinite domain with the distance-dependent and time-dependent
dispersivities. The level of the contaminant concentration was predicted for the aquifer and
aquitard. The results obtained showed that the concentration distribution for different
geological formations, such as aquifer and aquitard, with varying velocity field are less in
aquifer than in aquitard. Jimoh et al/ (2017) used Bubnov-Galerkin weighted residual
method to study one-dimensional contaminant flow in a finite medium. Their results showed
that the contaminant concentration decreases with increase in the distance from the origin
as the dispersion and velocity coefficient decreases. Chatterjee and Singh (2017) presented
a numerical solution for two-dimensional advection-dispersion equation with depth-
dependent variable source concentration. Their results showed that the peak of contaminant
concentration can be reduced significantly after a certain distance and it may be further
reduced to a constant value.

Gutierrez et al. (2017) investigated the potential of using RBF for the highly turbid and
contaminated waters in Columbia, putting into consideration the improvement of water
quality and the influence of clogging through suspended solids. The results from their study
showed that RBF is an appropriate technology for the removal of high turbidity, pathogens,
inorganic, organic and micro-pollutant. In addition, RBF serve as protection against shock
load. Selamat et a/. (2019) gave an analysis on how bacteria can be removed and also the
reduction of bacteria concentration with low frequency electromagnetic field (LF-EMF) as a
component of the non-ionising radiations in RBF. They designed and constructed a LF-EMF
device on horizontal coiled columns which produce uniform magnetic fields of 50 Hz. A
magnetic field density was varied at 2, 4, 6, 8, and 10 mT. The results from the study
indicated that bacteriain the sample of water that was exposed to the LF-EMF was
statistically significantly decreased. The magnetic intensity of the LF-EMF changed the
characteristic responses for bacteria. Adeboye et a/. (2013) studied the optimal analysis of
contaminant inversion in an unconfined aquifer system. The result of their study shows that
the level of contaminant reduces as time increases in the domain.

The present work seeks to investigate the effect of decay rate on virus concentration in RBF
while considering DOM as a nutrient for bacteria.

Mathematical Formulation of the Problem

We consider unconfined, homogeneous and isotropic aquifer. The origin is considered as the
point source of colloidal concentration while at initial time, the colloidal concentration is not
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uniform. It is assumed that the aquifer is saturated with dissolve organic matter (DOM)
which is utilized as a nutrient for bacteria. The aquifer is assumed to have contaminants,
dissolve organic matter, bacteria and virus under simplistic river bank filtration conditions.
Based on the above assumptions, the equations governing the phenomenon are as follows:
The mass balance equation for bacteria (captured and suspended) in the aqueous phase of
saturated porous media may be describe as:
,oC ac, aC o (. oC
+e&V,—2=g—| D,—2
“Tat a o ox gax( P j Qo =~ Qumo 2.1)
+ Qqib — Quib + Qqob
The mass balance equation for virus (captured and suspended) in the aqueous phase of
saturated porous media may be describe as:
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The mass balance equation for contaminant may be expressed as:
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The mass balance equation for DOM in the aqueous phase may be expressed as:
oc, C, C, _,.9(p 9o _ 2.4
& t + oK, it +é&v, o —gaX[DO GX) Q.. (2.4)

If bacteria and virus can utilize contaminants sorbed on bacteria, virus, DOM and solid
matrix, the growth rates of mobile bacteria and mobile virus with contaminants as a food
source may be presented respectively as (Kim & Corupcougla, 1996):

Qyro = “If<nax [cc 4+ £ 'Zlcc +C,K,C, +C,K,C, +C,K.C, )gcb (2.5)
Qe = ”lzax (Cc + P *?Cc +C,K,C, +C,K,C, +C, KSCC}&CV (2.6)

The growth rates of immobile bacteria and immobile virus may be presented respectively as:
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The growth rates of bacteria with DOM as a food source may be expressed as first-order
kinetic expression as (Borden & Bedient, 1986):

Quor = Ko Y,éC,t (2.9)

The decay rates of mobile bacteria and mobile virus may be expressed as first-order kinetic
expression respectively as (Borden & Bedient, 1986):

Qump = Kdmb‘EC (2.10)

Qdmv dmv (2.11)

The decay rates of immobile bacteria and immobile virus may be expressed as first-order
kinetic expression respectively as:

Quiv = Ko K Gy (2.12)
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Qdiv = Kdivrov KVCV (2-13)
Equation (2.14) represents the utilization rates of contaminants sorbed on DOM.
_ Mo CoKoCe (2.14)
ro KsYb (‘C’Cb)

Where:

3 is the biological processes at the riverbed, RC is the retardation factor, Q is the stream

depletion flow rate, SS is the specific storage coefficient, K is the hydraulic conductivities,
m,(x, t) is the concentration of contaminant measured at the pumping well, g is the

pumping rate, L is the distance of the pumping well from the river, C,, C,, C, & C, are the
concentration of the bacteria, virus, contaminant and DOM suspended in the aqueous phase
respectively, ¢ is the water content,V, is the pore water velocity, D,, D,, D, & D, are the
hydrodynamic dispersion coefficient of bacteria, virus, contaminant and DOM respectively,
P & p, are the density of bacteria and virus respectively, o & o, are the volumetric

fraction of bacteria and virus respectively, K, , K, are the linear equilibrium distribution
coefficient of bacteria and virus between the aqueous phase and the solid phase
respectively, K,is the first-order decay rate coefficient of DOM, K;is the half saturation

constant,Yb and Y, is the yield coefficient of bacteria and virus, u.. 1S the maximum
growth rate, K1 is the linear equilibrium distribution coefficient of contaminants between the
aqueous phase and the solid matrix, K2 is the linear equilibrium distribution coefficient of

contaminants between the aqueous phase and DOM, K, & K, are the linear equilibrium
distribution coefficient of contaminants between the aqueous phase, mobile and immobile
bacteria respectively, K; & K, are the linear equilibrium distribution coefficient of
contaminants between the aqueous phase, mobile and immobile virus respectively,
Ky & Ky, are the decay rate coefficient of mobile and immobile bacteria respectively,

Ky & K, are the decay rate coefficient of mobile and immobile virus respectively, p is
the dry bulk density of solid matrix,

O is the mass fraction of contaminants sorbed on solid matrix, Q,.is the utilization rate of
contaminants sorbed on DOM, O, is the mass fraction of contaminants attached to DOM.
Substituting equation (2.5) — (2.14) in to (2.1) — (2.4), we obtain
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The dependence of diffusion coefficients on the concentration of contaminant is taken in to

account by the mathematical expressions:
D, =D, e*, D, =D, e™, D,=D“ and D,=D, g (2.19)

The initial and boundary conditions associated with the equations are formulated as:

C, (x, o):C';_OX, —D;% +G,(0,1)=0, % =0
x=0 x=L
C,oX .0C aC

C,(x,0)==w=  _p; = c,(0,t)=0, =4 =0
(x,0)= = ol T ,(0,1) i (2.20)
CC(X, 0)= CcOX’ _ D: aCc +Cc(0’ t)= 0, aCC =

L X |0 OX |y,
C,(x, o):COOX, -D; C, +C,(0,1)=0, AT

L X |, OX |,y

Method of Solution

Dimensional Analysis
Equation (2.15) - (2.20) were non-dimensionalized using the following dimensionless

variables
Kt X C C C C
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Then we obtain
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Analytical Solution
Equations (2.22) — (2.25) satisfies (2.26) were solved analytically using parameter
expanding method and eigenfunction expansion technique and we obtained
2
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Where,
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Results and Discussion

In this section, the governing equations (2.22) - (2.25) were solved analytically using
parameter expanding method and eigenfunction expansions techniques, the solutions are
discussed with the help of input data as follows:

From figure 1 and 2 we observed that the virus concentrationsy increases along distance

and decreases with time, but increases with increase in Decay rater,. Figure 3 and 4 shows
that an increase in Hydrodynamic dispersion coefficient D,, reduces DOM concentrations ¢ .
In a similar manner, Figure 5 and 6 shows that the virus concentrations y increases and
later decreases with an increase in dispersion coefficient values D, .

T T T T ! 0 0001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
0 0.2 0.4 06 0.8 1 Time
Distemce

|—r_3=2 ;‘D=4....F‘D=ﬁ|

r_3=2 i‘D=4-...-rD=6|

Figure 2. Relation between virus
concentrations against time at
various values of decay rate

Figure 1. Relation between virus
concentrations along distance at
various values of decay rate
coefficient
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Figure 4. Relation between DOM
concentrations alongtime at various
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Figure 5. Relation between virus

concentrations alongdistance at
various values of dispersion
coefficient
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Figure 6. Relation between virus
concentrations alongtime at various
values of dispersion coefficient

In this work, we have discussed various mathematical models involving colloidal transport
equations. We have also used an analytical method in evaluating the transport equations
and have given profiles for different values of parameter. From the results obtained we can

conclude as follows:

1. Increase in the value of decay rate, increases the concentration of virus and later

reduces.

2. The hydrodynamic dispersion coefficients reduce both the concentration of virus and

DOM.
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3. Based on the above results, there will not be further treatment of the pumped water
from RBF.
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