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Abstract 
This paper investigates the effects of Magnetohydrodynamics (MHD) on convective flow of 
dusty fluid with viscous energy dissipation. The governing partial differential equations 
(PDEs) in dimensionless form are solved numerically and analyzed using semi-discretization 
method known as Method of Lines (MOL). The effects of different flow parameters on the 
velocity profiles of both the fluid and the particles as well as the temperature profile of fluid 
are examined and presented graphically. It is observed that the velocity of the fluid and the 
dust particle increases with increase in Grashof number. Also, the velocity of the fluid and 
the particle decreases with increase in magnetic parameter. Moreso, increase in Prandtl 
number reduces temperature of the fluid. 
 
Keywords: Dusty fluid, Method of Lines (MOL), MHD, Viscous dissipation. 
 
Introduction 
The need for the study of dusty flow of an incompressible and electrically conducting fluid 
through various cross sections had rapidly increased in recent years as the efficiency of the 
devices used in industries and engineering depends on the particles suspended in the fluid 
under the effect of magnetic field. Therefore, great efforts have been made by several 
authors to analyse the effect of magnetic field on the velocity of fluid in the presence of dust 
particles. Khare and Singh (2010) studied MHD flow of a dusty viscous Incompressible fluid 
confined between two vertical walls with volume fraction of dust. Saxena and Dubey (2011) 
studied unsteady MHD heat and mass transfer free convection flow of polar fluids past a 
vertical moving porous plate in a porous medium with heat generation and thermal 
diffusion. Khare and Singh (2012) studied the flow of an unsteady conducting dusty fluid 
through an inclined circular channel. Gireesha et al. (2012) critically analysed the 
Magnetohydrodynamics (MHD) flow and heat transfer of a dusty fluid over a stretching 
sheet using numerical technique. Mohammed et al. (2015) presented an analytical method 
to describe the heat and mass transfer in the flow of an incompressible viscous fluid past an 
infinite vertical plate with the governing equations accounting for viscous dissipation effect 
and mass transfer with chemical reaction of constant reaction rate. Durojaye et al. (2020) 
used Method of Lines (MOL) in studying and analysing the effects of some flow parameters 
on unsteady MHD fluid flow past a moving vertical plate embedded in porous medium in the 
presence of Hall Current and Rotating system. 
 
Olayiwola (2016) presented an analytical method for studying chemically reacting flow in a 
laminar premixed flame of carbon monoxide/oxygen mixture in the region of the stagnation 
point. Saidu et al. (2010) studied the laminar convective flow of a dusty viscous fluid 
through a porous medium of non-conducting walls in the presence of uniform transverse 
magnetic field with volume fraction and considering porous parameter. 
 
In this paper, the effects of Magnetohydrodynamics (MHD) and other pertinent flow 
parameters on convective flow of dusty fluid with viscous dissipation are investigated using 
Method of Lines (MOL). 
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Model Formulation 
We consider unsteady laminar flow of a dusty, incompressible, Newtonian, electrically –  
conducting and viscous fluid through a porous medium of uniform cross section  , so that 
when one wall of the channel is fixed, and the other is oscillating in time about a constant 

non-zero mean. At    , the channel wall as well as the fluid are assumed to be at the 

same temperature 0T  . When     , the temperature of the channel walls is instantaneously 

raised to wT  which oscillate with time, then, maintained constant. Let x-axis be along the 

flow of liquid at the fixed wall and y-axis perpendicular to it. A uniform magnetic field of 

strength  0 0cB H  is applied perpendicular to the flow region.  

 
In formulating the governing equations, the following assumptions are considered: 

(i) The dust particles are solid, spherical, non-conducting equal in size and uniformly 
distributed in the flow region i.e., the dust particles gain heat energy from the fluid 
by conduction through their spherical surface.  

(ii) The number density of dust particles is constant with uniform temperature between 
the particles throughout the motion.  

(iii) The interactions between the particles, chemical reaction and radiation between the 
particles and liquid have not been considered. This is necessary in order to avoid 
multiple equations. 

(iv) The buoyancy force induced magnetic field and Hall effects have been neglected. 
This means that the flow region has uniform temperature, uniform applied magnetic 
field and a Cartesian coordinate.  

(v) The volume occupied by the particles per unit volume of the mixture and mass 
concentration has been taken into consideration.  

(vi) The magnetic Reynolds number is taken to be very small so that induced magnetic 

field is negligible. This means that a uniform magnetic field 0B   is applied in the 

positive y-direction and is the only magnetic field in the problem. 
(vii) The dust concentration is so small that it is not disturbing the continuity and hydro 
magnetic effects. This means that the continuity equation is satisfied.  
(viii) Viscous heat dissipation is taken into consideration. 

 
Based on the assumptions (i) – (viii), we have the governing equations: 

       
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Subject to the initial and boundary conditions 

 ,0 0,fu y     (0, ) 0,fu t     ( , )fu h t U                                                            (4) 

 ,0 0,pu y       0, 0,pu t       ,pu h t U                                                          (5)     

  0, ,T y o T     00, ,T t T         1,T h t T                                                           (6) 

 

where,   = kinematic viscosity, fu = The velocity of the fluid, pu = Velocity of the dust 
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Particles, m  = mass of each dust particles, 0N  = number density of dust particles, T = 

Temperature of the fluid, 0T  = initial temperature fluid and wall,  = volumetric coefficient 

of thermal expansion, 
pC  = specific heat at constant pressure,  = volume fraction of dust 

particles, K = stokes resistance coefficient, 0H = magnetic field induction, c = magnetic 

permeability,   = electric conductivity of the liquid, k  = thermal conductivity, 1K  = porous 

parameter. 
 
Method of Solution 
 
Non-dimensionalisation 
Introducing the following dimensionless quantities as used by Saidu et al. (2010): 

2
,
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Equations (1) – (6) in dimensionless form become:                            
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Subject to initial and boundary conditions: 

 ,0 0;y                 0, 0;t                11, t b                                                                 

(11) 

 ,0 0;y               0, 0;t               21,t b                                                      

(12) 

 , 0;y o                   0, 0;t             1, 1t                                                                

(13) 
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Method of Lines (MOL) 
The basic idea of the MOL is to replace the spatial (boundary value) derivatives in the PDE 
with algebraic approximations. Once this is done, only the initial value variable, typically 
time in a physical problem, remains as seen in Biazar and Nomidi (2013). Then, with only 
one remaining independent variable, we have a system of ODEs that approximates the 
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original PDE. Any suitable integration algorithm for initial value ODEs can now be used to 
compute an approximate numerical solution to the PDE as seen in Schiesser (1991) and 
Knapp (2008).   
 
In linearizing and explicitly decoupling equations (8) – (10), we adopt the following 
approximations by Chung (2002) considering     in equation (8),     in equation (9), 

2 2( ) , ( )
y y

  
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in equation (10) to be unity (Constant). In view of the approximation, 

equations (8) – (10) become: 
2

1 2 3 12
( )M Gr

t y

 
    

 
     

 
                                                                (14)

2

2
Gr

t f y f f f

     
 

 
   

 
                                                                         (15) 

2

2

1
2 cE

t Pr y

  
 

 
                                                                                             (16) 

 
subject to initial and boundary conditions (11) – (13). Then, we solve equations (14) – (16) 
subject to the conditions (11) – (13) by the method of lines (MOL). 
Discretizing equation (14) in space variable   while leaving time variable   continuous, we 
have the system of ODEs: 
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Now, equation (17) – (19) can be solved iteratively using the boundary conditions 

(0, ) 0t   and  (1, ) 1t   in equation (11). For  1,2,3,...,i N   0(0, ) ( , ) 0t y t     

0 1(1, ) ( 1, ) 1t N t b     eq. (18) is written as a system of ODEs: 

1 1 0 2 1 3 2 4
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...........................................
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The system of equations in (20), in matrix form is given as:  
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where the coefficients 1 2 3, ,    and 4  are given by equation (19) and i
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In a similar way, equation (15) becomes: 
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Now, equation (22) – (23) can be solved iteratively using the boundary conditions 

(0, ) 0t   and  (1, ) 1t   in equation (12). For  1,2,3,...,i N  0(0, ) ( , ) 0t y t  
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The system of equation (25), in matrix form is given as  
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Similarly, equation (16) becomes: 
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Thus, equation (27) – (25) can be solved iteratively using the boundary conditions 

(0, ) 0t   and  (1, ) 1t   in equation (13). 

For  1,2,3,...,i N  and  (0, ) ( , ) 0t y t    and (1, ) ( 1, ) 1t N t    can be written as a 

system of ODEs: 
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The system of equation (26), in matrix form is given as  
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where the coefficients 1 2 3, ,    and 4  are given by equation (25) and i
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Results and Discussion 
In this paper, the effects of concentration resistance ratio, volume fraction and mass 
concentration of dust particle, porous parameter, and other pertinent flow parameters on 
convective flow of dusty fluid with viscous dissipation are considered. In the analysis, 
Method of lines (MOL) is used as a numerical method to solve the governing equations of 

the flow model. For numerical computations, the values of the flow parameters:    
                                                . Also, the MATLAB code is 

used in obtaining solutions of systems of ODEs in equations (21), (26) and (31), as well as 
stimulating the graphs. Figure 1 shows the effects of magnetic parameter M, on velocity 
profile of the fluid flow, it can be seen that as parameter increases, velocity of the flow 

decreases. Figure 2 shows the effect of Grashof number,   , on the velocity profile of the 
fluid flow and as it increases, the velocity of the flow increases. Figure 3 shows the effect of 

porous parameter,   , on velocity profile of the flow and as it increases, the velocity of the 

fluid flow decreases. Figure 4 – Figure 5 show the effects Grashof number    and volume 

fraction of dust particles  ,  on velocity profile of the dust particle and as they increase, the 
velocity of the dust particle flow increase. Figure 6 shows the effect of mass concentration 
of dust particle,  , on the velocity of the dust particle flow and as the parameter increases, 

the velocity of the dust particle flow decreases. Figure 7 shows the effect of concentration 
resistance ratio,  , on the velocity of the dust particle flow and as it increases, the velocity 

of the dust particle flow increases. Figure 8 shows the effect of Eckert number,   , on the 

temperature profile of the flow and as it increases, the temperature profile of the flow 
increases. Figure 9 shows the effect of Prandtl number,   , on the temperature profile of the 
flow and as it increases, the temperature profile of the flow decreases.  
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             Figure 1: Velocity profile of the fluid flows for various values of   
 
 

 
                       Figure 2: Velocity profile of the fluid flows for various values of    
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                 Figure 3: Velocity profile of the fluid flows for various values of    
 
 
 

 
                 Figure 4: Velocity profile of the dust particles for various values of    
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                  Figure 5: Velocity profile of the dust particles for various values of   
 
 

 
                    Figure 6: Velocity profile of the dust particles for various values of   
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                   Figure 7: Velocity profile of the dust particles for various values of   
 
 

 
                       Figure 8: Temperature profile of the flow for various values of    
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                        Figure 9: Temperature profile of the flow for various values of    
 
Conclusion 
In this paper, method of lines (MOL) is used in solving coupled partial differential equations 
of the flow model of convective flow of dusty fluid with viscous dissipation. Then graphs are 
also obtained to examine the effects of different physical parameters on velocity profile of 
the fluid flow, velocity profile of the dust particle and the temperature profile. It is found 
that: 

(i) The velocity profile of the fluid flow increases with increase in grashof number    
while it decreases as magnetic parameter    and porous parameter    increase. 

(ii) The velocity profile of the dust particle flow increases with increase in grashof 

number   , volume fraction of dust particle  , concentration resistance ratio  , while 
it decreases with increase in mass concentration of dust particle  . 

(iii) The temperature profile of the flow increases with increase in Eckert number    
while it decreases with increase in prandtl number   . 
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