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Abstract  
The paper theoretically examines the behavior of claim size function with a deductible structure 
in a loss event under the potential of singularity kernel. It is a separate and further extension 
of the work of Ogungbenle et al. 2020, where singularity function was initiated to study 
differential equations which govern actuarial problems in actuarial risk theory. The effect of the 
structural properties of the singularity kernel on the expected loss as it relates to general 
insurance business have been studied. Consequently, the asymptotic claim that singularity 
potential at any point on the real line domain where the integral over the extended real line of 
the product of a function and dirac-delta always produces the functional value of the function 
at that material point form the basis of our arguments throughout. We have also constructed a 
novel method of modelling the characteristic function of a complex random risk as part of our 
contributions and findings. The results of our investigation show that the amount of claim size 
and its higher moments in a loss event is a function of the coverage modification parameter 
and the expected value of the individual random risk.  
 
Keywords: Actuarial present value, claim size, singularity potential, moments. 
 
 
1. Introduction to Singularity Functions  
This paper aims to theoretically investigate the behavior of actuarial functions under the 
potential of singularity kernel. It is a separate and further extension of the work of Ogungbenle 
et al, (2020) where singularity function was initiated to model differential equations which 
govern actuarial problems in risk theory. In (Dirac,1930; Pazman & Pronzato,1996; Saichev & 
Woyczynski,1997; Onural, 2006 and Salansnich, 2014), the discontinuous Heaviside function of 

the first kind at the point 0x   was discovered which is usually applied in the analysis of 

electrical circuit quantum physics, and statistical physics. The quantum distribution of electrons 
in metallic object was described where the Fermi- Dirac probability density function for the 
distribution of electron was formulated as follows 
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where,  X   , represents the deviation of the electron’s energy  from the chemical 

potential .  if T is the absolute temperature and K
 Boltzman constant, then the inverse of 

the absolute temperature, 

 
1

J T
K T

            (4) 

We investigate the limiting value of  f x  and  F x  as  approaches infinity 
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From the computation of the limiting value above there is hardly any risk function which can 
satisfy the condition of the limit function and the integral simultaneously. This issue motivated 
(Dirac,1930 and Zhang,2018) to carry out an independent work in deriving the density of 
extreme and localized charge and reformulated the problem created by the above two condition 
so that probability density function can meet the conditions above simultaneously. In view of 
(Pazman & Pronzato,1996; Kanwal,1998; Khuri,2004; Mohammed,2011; Ogungbenle et al, 
2020), the problem that no single risk function can satisfy both conditions can be avoided by 
redefining the limit function and integral stated in equations (7) and (8) below 
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We see from (Salansnich,2014 and Zhang, 2018) that certain probability density functions such 
as Gaus(x) can meet the two conditions above. The Gausian function could be examined in the 
limit to check the authors’ claim. 
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implying that the limit  
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 is actually not in indeterminate form. The probability is 

defined on the real line and the integral of probability density function on the real line is 1, we 
have, 
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Theorem: Suppose y  represents a random risk and d  is the deductible then under the 

singularity potential, the following condition holds 
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2  The Mathematical Theory of Dirac-Delta Function 
Applications of ordinary differential equations are currently employed in modeling insurance 
cash flows and change in all discipline of actuarial science. This application has become an 
important technique of risk analysis essentially in general insurance business. Most problem in 
actuarial risk literature concerns the development of model for general insurance and casually.  
It is on this basis we use singularity function to investigate the behavior of actuarial function in 
a new dimension and then derive model in actuarial statistic and casually.  
The second order differential equation  
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is deep rooted in many branches of actuarial discipline, especially in financial engineering where 
it has been used to analyse the term structure of interest rates by setting the forcing  function 
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  0g s    and  further assuming that the homogenous  differential  equation 
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       has equal real roots with constant co-efficient , 1, 2,3.i i   Following 

(Balcer & Sahin, 1979; Saichev & Woyczynski, 1997; Kanwal,1998; Khuri, 2004; Onural, 2006; 
Sastry, 2009; Mohammed, 2011and Ogungbenle et al., 2020), a core application of integral 
transform  occurs in dealing with ordinary differential  equation with discontinuous forcing 
function structure particularly in the analysis of  step function and in engineering, where the 
characteristic equations defining the behavior of an electric circuit in the complex frequency is 
associated with linear combinations of exponentially scaled and time-shifted damped sine wave 
in the time domain. Furthermore, the integral transform is used to map a function from its 
original function space into another function space through integration such that the behaviour 
of the original function could be more conveniently characterized than in the original function 
space. Consequently, the transformed function is then mapped back to the original function 
space through the use of inverse transform. 
 
In Ogungbenle et al., (2020), the dirac-delta function was obtained through the second order 
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Here    where   is a small positive number. Hence, the impulsive force is 
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(Kanwal,1998 and Salansnich,2014) assume 0  in the interval and then define the function 
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value of total impulsive force is 1. The integral value 1 and the limiting value 0 both define the 

value of dirac-delta function    which has a value 1 when 0s   and 0  if otherwise. 
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3 Decomposition OF Risk Measure  
The authors in (Saichev & Woyczynski, 1997) investigated marginal decomposable risk measure 

 Z  and observed that the analysis of risk measure begins by pooling insured peril iY  together 

that is 
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components are usually the insurance lines of business. The composition of the component 
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continuous. Whenever, the risk measure for an insurer is obtained as a sum function of related 
business unit risk measures, then the original risk measure is the decomposition of risk measure 

to the business units. The variance of iY  will not total up to the variance of Z  except  iY   are  

all independent random variables  thus the allocation of variance  as  a function  of the  variances 
of  the component units cannot be decomposed unless there  is independence. It can then be 
inferred that if each line of insurance business is assigned its marginal impact, then the 

decomposition of the risk measure  Z  is marginal where the impact described a small 

incremental change or the whole insurance lines of insurance business.  
 
3.1 Density Function Using Dirac-Delta Kernel  
This section lays the foundation for the application of the actuarial statistics and singularity 
potential, part of which is recalled from Ogungbenle, et al. (2020) to form the basis of our 
investigation. 
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In view of (Jack & Ormiston,1999; Venter et al., 2006; Tse,2009) and Ogungbenle, et al. (2020), 
we recall the followings to enable us explain the use of dirac-delta function. We let 
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f z
              (42) 

We recall from Ogungbenle et al. (2020), that this is a function of 
2z  but 

1z  is arbitrary value 

of  1 1 0f z    

 
 

 

11 2

2 2

2 1

2

1 2

2 1

1 1

,X X

z

X X
z

f z z

f z z
f z





                  (43) 

 
 

 

11 2

1 1

1 2

1

1 2

1 2

2 2

,X X

X

X X
X

f z z

f z z
f z






                     (44)

 

 
 

 
1 2

1 2

, 1 2

1 2

2 2

,X X

X X

f z z
f z z

f z


                       (45)

 

 
 

 

 

 
1 2

2 1

, 1 2 1 1 2 2

2 1

1 1 1 1

, Pr .

Pr

X X

X X

f z z X z X z
f z z

f z X z

 
 


                   (46)

 



Journal of Science, Technology, Mathematics and Education (JOSTMED), 17(1), March, 2021 
 
 

228 
 

 
   

 
2 2

1 2

1 1

2 1

1

1

n m

jk j k

j k

X X m

j j

j

p z z z z

f z z

p z z

 



 

 





 








              (47)

 

Thus following (Pazman & Pronzato, 1996; Kanwal, 1998; Khuri, 2004; Tse, 2009; Mohammed, 
2011 and Ogungbenle et al., 2020), the conditional density of the expected loss is defined. 
In the continuous case, we have 

       
1 2 1 21 1 1 2 2 2 2 1 2 1, , ,X X X Xf z f z z dz f z f z z dz

 

 
                       (48)

 

   
1 21 1 1 2 1 2,X Xf z dz f z z dz dz

  

  

    

 
 

 
1 2

1 2

, 1 2

1 2

2 2

,X X

X X

f z z
f z z

f z


                   (49)

 

The joint density function, 

     
1 2, 1 2 1 2 1 2 1 2, , ,X Xf z z f z z z z z z dz dz  

                (50)

 

 
 

 
1 2

1 2

, 1 2

1 2

2 2

,X X

X X

f z z
f z z

f z


                   (51)

 

 
   

   1 2

1 2

1 2 1 2 1 2

1 2

1 2 2 1

, ,

,
X X

X X

f z z z z z z dz dz
f z z

f z z z z dz





 



 






                           (52)

 

 
4   The Characteristic Function Of A Complex Random Risk 

Let X  be a random risk with density  Xf x  and 1i   , then the characteristic function of 

X  defined by    isx

X s E e   

         cos sin
x

x X X

X

s sx f x i x f x


          (53) 

         cos sin
x x

x X X

x x

s sx f x i sx f x
 

              (54) 

and in the continuous sense, we have 

            




 dxxfsxixfsxeEs xx

isx

x sincos

      (55) 

            








 dxxfsxidxxfsxs xxx sincos

          (56)

 

   

       
1 1

cos sin

isx

x

m m

j j j j

j j

s E e

sx P X x i sx P X x



 


 

 

 

 
   

 
           (57)

 

         
1 1

cos sin
m m

x j j j j

j j

s sx P X x i sx P X x dx  


 

 

 
    

 
 

   (58) 
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            




 








m

j

m

j

jjjjx dxxXPsxidxxXPsxs
1 1

sincos 

      (59)

 

          
















m

j

jjj

m

j

jx xXsxPidxxXsxPs
11

sincos 

      (60)

 

 
1 1

cos sin
m m

x j j j j

j j

s P sx i P sx  

 

  

           (61)

 

Let  xf  be a continuously smooth and integrable function of a random risk, then recalling 

from equation (31), 

     dssfsssf 




 0

         (62) 

       dssfdVeedssfdVesf iVsiVttsiV

 


















 


















2

1

2

1
0

    (63)

 

   





 dVets tsiV




2

1

                  (64) 

Thus if 0t  , then we have 

 
1

2

iVss e dV






            (65) 

The fast Fourier transform FFT  of  f  is defined as 

   




 dssfeVFFT iVs

          (66) 

   dVVFFTetf iVt








         (67) 
Requiring the probability density is to be evaluated for a defined number of arguments, the fast 
Fourier formula is applicable so as to enhance the speed of the convergent integral. The function 

 sx  wholly specifies the distribution of random variable X  to the extent that when 

   x Ys s   X and Y  will be identically distributed but if X and Y  are independent random 

variables       ,X Y Y Xs s s s   

   . The characteristic function describes the Fourier 

transform of the probability density function of a random actuarial risk such that 

    .dssfeVFFT iVs






  The function  sf  can be used to obtain the final pay–off to a unit 

linked insurance which is maturing at time s  
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5 The Method Of Obtaining Moments Of Actuarial Risk By Dirac-Delta Kernel 
In (Jack & Ormiston,1999; Venter, Mojor & Kreps, 2006; Sakthivel & Rajitha,2017and Lui & 
Wang , 2017), the policy could be written such that the insured would be responsible for part 
of the risk by introducing policy excess (deductible) in the policy terms and conditions of the 
coverage. However, drawing inference from (Schlesinger,1981; Schlesinger,1985; Thogersen, 
2016 and Frees, Lee & Yang,2016), it is possible that there may be a reduction in the average 
amount and variability in amount paid out by the underwriter such that the probability that the 
underwriter will experience a high claim pay-out on block of claims will damp out.  
 
Assume that the loss incurred by the policy holder is X  but Y defines the part of the loss 
incurred by the insurance firm.  The payment per loss random variable describes the losses 

over which a payment has been made as well as losses lower than the deductible d  hence 

            ’       ’  Total loss X Insurer s paid claim Y insured sloss U  and consequently the amount 

of claim size in the loss event is defined as follows 

0,

,
L d

X d
X Y

X d X d


  

 
 










0,

0,0

XX

X
X           (68) 

and       
0

d

d X XE U d S d yf y dy          (68a) 

  ,LX X d


    where 

     
0

PrdE Y E X d X d x dx




                

(69) 

   Pr 0L XX F d                

(70) 

LX  is a censored and random shifted variable by reason of the fact that claim values lower 

than d have not been ignored and all losses have been shifted away by d  

In view of (Mojor & Kreps, 2006 and Tse, 2009),
LX  has a probability mass point at zero of 

 XF d  

    , , 0
LX Xf x f x d for x           (71) 

        
0

d

L X XE X E X d d S d yf y dy


           (71a) 

     
LL XE X X d dF x





            (72) 

       

   

0

0

Pr

L

L

L X

X

E X X d dF x E X d

X d x dF x





   

  





       (73) 

d x dx d      
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We can determine the expected value of loss as, letting      Pr
LL X

d

E X X f x d 


   by 

the requirement of deductible. It is observed in (Schlesinger,1985; Venter, Mojor & Kreps, 2006; 
Thogersen, 2016; Lui and Wang, 2017) that the indemnity function 

      max ,0Ind L E X d X d


      

and     Pr PrX d x X x d


            (74) 

     
1

m

L j j

jd

E X X d P X x dx






          (75) 

     
1

m

L j

j d

E X P X d X x dx






           (76) 

   
1 1 1

m m m

L j j j j j

j j j

E X P X d P X dP 

  

             (77) 

  ,

1 1

m m

L j j j

j j

E X P x d P

 

    Recall that 1
1




m

j

jP        (78) 

   
1

m

L j j j j

j

E X P x d E x d d  



            (79) 

Thus, in view of (Venter, et al., 2006; Gomez-Deniz 2016; Valecky 2016; Garrido, et al., 2016; 
and Sakthivel & Rajitha, 2017), the above represents the expected claim liability under the 
deductible policy contract that the insurer is liable to pay. 
 
The insurer’s loss on the contract is both non-negative and potentially large. In order to model 
claim of large sizes using insurance data, the loss probability densities using frequency-severity 
conditions usually give room for high value distribution normally skewed to the right and fat-
tailed in practical setting. In actuarial casualty, the tail of the fat tailed-distributions are usually 

not exponentially bounded, that is, for any 0x  , the density  Xf x will not be of the form 

 Pr xX x e     

Furthermore, we infer in (Schlesinger,1981; Garrido, Genest & Schulz,2016; Park; Kim & 
Ahn,2018; Woodard & Yi, 2018), actuaries make use of loss probability models to estimate the 
value of monetary loss of an insurance claim since the ultimate goal of the underwriter is to 
obtain the total value of claims so as to find a convenient value for both premium and reserves. 
Actuarial loss distribution shows the probability of a severity of a defined amount and the 
probability of a loss being higher or falling below a defined loss size. The loss distribution could 
be applied to compute the expected proportion of the aggregate severities in excess of a certain 
Naira-threshold or the expected losses in excess of the deductible amount. With a deductible 
condition, the underwriter grants cover for the less predictable severity with a bigger random 
component structure. Consequently, the underwriter may wish to include a particular 
incremental risk margin. Although the estimation of risk margins is not within the scope of this 
paper, it is assumed for explanation purposes that the underwriter could add an additional risk 

margin %  of excess losses. The second moment is defined as follows. 

         
2 22

L LL X XE X X d f x dx X d dF x

 

 

           (80) 

Since density is only defined on the real line, we integrate from zero to infinity  
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     
22

0

LL XE X X d dF x



          (81) 

By the definition of deductible, we integrate within  ,d   

     
22

1

m

L j j

jd

E X X d P X x dx






          (82) 

     
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1

m

L j j

j d

E X P X d X x dx






           (83) 

     
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1 1 1 1

2
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L j j j j j j j

j j j j

E X P x d P x d P x P d  

   

            (84) 

   
2
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1 1

2
m m

L j j j j

j j

E X P x d P x d 

 

           (85) 

      
2

2 22L j jE X E x dE x d           (86) 

   
2

2 22L j jE X d d             (87) 

To illustrate this basic concept therefore, we assume that the loss is exponentially distributed 
with mean loss N M  and that the insurer will indemnify the value of the loss in excess of 

deductible pricing Nb . it is possible to obtain the variance of the value identified on one claim.  

 
0,

,
L

X b
X X b

X b X b


   

 
        (87a) 

         
b

M
L X X

b b
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 


           (87b) 
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b

M
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b

E X x b f x dx M e


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L X X
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V X x b f x dx x b f x dx

  
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 
        (87d) 
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2

22 2 2 1
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2
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   
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   (87e) 

as the mean loss M  increases, 2 1

b

Me
 

  
 

 and     21

2
L LV X E X   (87f) 

     
33

LL XE X X d f x dx





          (88) 

Again, by the definition of deductible, we integrate for from d  

     
33
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L j j
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E X X d P X x dx

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3
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


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         
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     
3 2

3 3 23 3L j j jE X d d d               (94) 

 
6 Discussion Of Results 

It will be necessary to show that the binomial quantity  
k

x d is well defined.  

Recall that the risk exposure x and deductible d are of opposite signs for ,d x    

 

 
 1 ; 1

k

k

k

d x
p q p q

d x


    


 

Let the real numbers 0d  and 0x   

Assuming that 1 2 3, , ,..., rY Y Y Y  are independent and identically distributed random risk exposure 
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Therefore, computing the kth moment and substituting  
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 (102) 

 
Thus, the amount of claim size and the higher moments in the loss event is a function of the 

expected claim for the individual random risk and the deductible provided that j

 exists 
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7. Conclusion 
Singularity models relating to general insurance business has been proposed. In particular, the 
work of Ogungbenle et al. (2020) evolved a distribution of claim size in a loss event in a flexible 
form. In this paper, we have successfully applied the dirac-delta singularity function in actuarial 
risk while focusing on characteristic function together with expected loss and higher moments 
of amount of claim size in a loss event which are governed by singularity potential. We arrived 
at the kth moment of the expected claim derivative from a convergent integral, provided with 
a core application to improve the traditional actuarial severity setting. The essence of correct 
estimation of frequency and severity of insurance claim is to allow an insurance firm to meet 
payments of claims as they occur and to fulfill solvency requirements.  Reasonably, the impact 
of deductible is such that there will be lower number of claims advised when the deductible is 
enforced because a loss whose value is lower than the deductible would not produce any claim 
and in the event the scheme holder advises a claim, it is possible it would not result in payment 
going by the terms and conditions of the contract since that claim could be repudiated or the 
loss value could be determined to fall below the deductible. The policy holder would essentially 
pay a percentage of the first Naira premium for an excess or large deductible policy and takes 
responsibility for severity payments within the deductible domain of definition. Consequently, if 
the scheme holder thinks that it is a better risk than the average risk in underwriters’ rating 
scale, then the policy holder could minimize the aggregate insurance costs. An underwriter 
could advise a scheme holder with severe loss experience to buy a deductible contract. This will 
shift a percentage of the severity-frequency exposure from the underwriter to the scheme 
holder. Since the scheme holder retains lower losses, the scheme holder has the incentive to 
optimally control claims in order to mitigate the number of losses. Further research work could 
be directed towards simulation of the expected claim. 
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