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Abstract  
Plug flow can significantly enhance heat transfer in micro-channels as compared to single-phase 
flow. We investigate the impact of Peclet number and heat transfer coefficient on heat transfer 
in a liquid plug, solve the incompressible Newtonian fluid with constant properties and heat 
source, and solve the energy conservation equation by introducing a new space variable to 
provide an analytical solution to the two-dimensional heat transfer in the liquid plug. The 
governing equation was analytically handled utilizing Eigenfunction expansion techniques, which 
produced graphical summaries of the system responses on heat transfer, as well as the effect of 
Peclet number and heat transfer coefficient. The findings showed that as the Peclet number rises, 
so does the maximum temperature, and the temperature rises over time.   
 
Introduction 
High-powered electronic devices require very effective cooling to prevent overheating due to 
increased heat flux from their continued miniaturization. Microchannel heat sinks with high 
surface and volumetric heat transfer rates are used to accomplish this. Internal recirculation 
between the two phases promotes heat transfer by disturbing the intrinsic laminar flow within 
the microchannels. Self-fabricated water-based ferrofluid plugs make up the dispersed phase, 
while silicone oil makes up the continuous phase. The magnetic plugs of fluid are manipulated by 
an external magnetic field, causing more disturbance of the laminar flow than non-magnetic two-
phase flow. Also, the ferrofluid plugs allow for easy separation of the two phases for pumping. 
Experimental results show that microchannel heat transfer using ferrofluid plugs is superior to 
that using deionized water as the dispersed phase for two-phase liquid-liquid plug flow and 
demonstrates that cooling performance is further enhanced by the application of an external 
magnetic field, inducing mixing within the flow (Gui et al, 2018). 
 
Nguyen, (2016), Microchannel heat exchanger simulation provides a means to obtain design 
predictions at low cost and quick turnaround. Key output parameters such as overall pressure 
drop, heat exchanger effectiveness, and heat exchanger output can be calculated fast for many 
different designs using computational fluid dynamics to solve the conjugate heat transfer 
problem. The problem can be reduced in most microchannel heat exchangers by solving each 
channel flow independently. By substituting plug flow and Poiseuille flow models for the individual 
channels, computational efficiency can be improved, presenting the coupling of plug flow and 
Poiseuille flow models with ANSYS’s computational fluid dynamics package, Fluent. The coupling 
algorithm is implemented between User Defined Functions and boundaries within Fluent’s 
domains, eliminating the individual channel domain from the computational domain. Using the 
simplified model, full heat exchanger designs can be accurately represented with up to a 74% 
improvement in computational cost.  
 
Tao-Wu et. al (2022) handle this kind of cooling problem under High-Temperature Conditions 
proposes liquid metal-based microchannel heat sinks. Using a numerical method, the flow and 
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heat transfer performances of a liquid metal-based heat sink with different working fluid types, 
diverse microchannel cross-section shapes, and various inlet velocities were studied and 
discussed.  
 
Model Formulation  
To analyze the heat transfer in a liquid plug, we consider the energy conservation of the plug 
with a translating frame of reference following the plug. For an incompressible Newtonian fluid 
with constant properties and heat source, the energy conservation equation is 
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The initial and boundary conditions are formulated as: 

  0, ,0T x y T ,     0,0, wT t T ,     , , wT l l t T                       (2) 

 
Where: 

T  is the temperature,  is the fluid density, k  is the thermal conductivity, PC  is the specific 

heat capacity, w is the width of the microchannel, v is the speed of the liquid plug, l  is the length 

of the liquid plug, 0T  is the inlet temperature, wT  is the wall temperature, h  is the heat transfer 

coefficient between the surface and the liquid plug, u  is the velocity along the x-axis, v  is the 

velocity along the y-axis,   is the dimensionless heat transfer coefficient. 

 
Dimensional Analysis 
Here, we non-dimensionalize equation (1) and (2.2), using the following dimensionless variables:  
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and we obtain 
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Together with initial and boundary conditions: 

     , ,0 0, 0,0, 1, 1,1, 1x y t t                    (5) 

 
Method of Solution 
In order to solve the dimensionless equations (4) and (5), we introduce a new space variable as; 

z x y                     (6) 

Then, we obtain 
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With the boundary and initial conditions 
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Next, we assume  

   , ,z tz t e z t                       (9) 

Where   and   are constant parameters  ,z t  is a new function 

Then, we have 
(10) 
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Substituting equations (10), (11), (12) into equation (7) and (8) gives; 

     
2

2

2
2 ,

z t
D D U D U z t

t z z e
    

   
     



  
       

  
             (13) 

 
To reduce equation (13) as a standard form of the dimensionless heat equation, the coefficient 
of the 2nd and 3rd terms of the RHS must equal zero. i.e. 

2 0D U                         (14)  
2 0D U                                           (15) 

From equation (14) and (15), we obtain  
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Now, the equations (7) and (8) change into the control equation: with initial and 
boundary conditions; 
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with initial and boundary conditions; 

       2
,0 0, 0, , 2,

ttz t e t e
   

              (18) 

Solving equation (17) and (18) using eigenfunction expansion method, we obtain 
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The computation was done using MAPLE 17 version. 
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Results and Discussion 
The equation describing the process of heat transfer in the microchannel is solved using the 
eigenfunction expansion method. The parameters of interest are Peclet number, velocity, and 
heat transfer coefficient. The solution obtained is computed using computer algebraic symbolic 
package MAPLE 17 version and the graphical representation is displayed in Figures 1 to 6 and 
discussed. 
 

 
Figure 1: Variation of fluid temperature with Peclet number 
 
Figure 1 shows the variation of fluid temperature with Peclet number. It is observed that the 
temperature increases and later decreases along with distance and maximum fluid temperature 
increases as the Peclet number increases. 
 

 
Figure 2: Variation of fluid temperature with Peclet number 
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Figure 2 shows the variation of fluid temperature with Peclet number. It is observed that the 
temperature increases with time and increases as the Peclet number increases. 
 

 
Figure 3: Variation of fluid temperature with velocity 
 
Figure 3 shows the variation of fluid temperature with velocity. It is observed that the temperature 
increases and later decreases along with distance and maximum fluid temperature increases as 
velocity increases. 

 
Figure 4: Variation of fluid temperature with velocity 
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Figure 4 shows the variation of fluid temperature with velocity. It is observed that the temperature 
increases with time and increases as velocity increases.  
 

 
Figure 5: Variation of fluid temperature with heat transfer coefficient 
 
Figure 5 shows the variation of fluid temperature with heat transfer coefficient. It is observed 
that the temperature increases and later decreases along with distance and maximum fluid 
temperature increases as the heat transfer coefficient increases. 

 
Figure 6: Variation of fluid temperature with heat transfer coefficient 
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Figure 6 shows the variation of fluid temperature with heat transfer coefficient. It is observed 
that the temperature increases with time and increases as the heat transfer coefficient increases. 
 
Conclusion 
In this paper, the heat transfers of plugs moving in micro-channels subjected to a constant surface 
temperature is investigated.  The equation describing the heat transfer process in plugs moving 
in 2D micro-channels is solved using the eigenfunction expansion technique. The effects of the 
Peclet number, heat transfer coefficient, and velocity are studied. From the result obtained, we 
can conclude that. 
(i) Peclet number enhanced the fluid temperature 
(ii) Heat transfer coefficient enhanced the fluid temperature 
(iii) Velocity of the fluid enhanced the fluid temperature 
(iv) Fluid temperature is at maximum value when 1z  . 
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