

Journal of Science, Technology, Mathematics and Education (JOSTMED), 20(1), March, 2025

51

SOFTWARE DEFECT PREDICTION USING SELECTED MACHINE LEARNING
TECHNIQUES

SAKA KAYODE KAMIL, ARO TAYE, HIKMAT BELLO-ABDULMUMIN, ABDULRAUF

TOSHO AND GBOLAGADE MORUFAT DAMOLA, TAOFIK ABIODUN AHMED
Department of Computer Science, Al-Hikmah University

Email: Kamilsaka67@gmail.com, taiwo774@gmail.com, hikmatbello@gmail.com
Abdtosh@gmail.com, dammyconsult@gmail.com, at.ahmed@kwaracails.edu.ng

Abstract
A common challenge in machine learning is selecting the optimal model hyperparameters.
However, almost all studies in Software Defection Prediction (SDP) using machine learning
models did not perform hyperparameter tuning to obtain the optimal model hyperparameters.
As a result, this study examined selected Machine Learning (ML) techniques on a freely
available data set. The purpose of the research was to improve the model performance in
terms of accuracy, precision and f1 score of the dataset compared to previous research. As
previous investigations show, the accuracy can be further improved. For this purpose, this
study employed Particle Swarm Optimization for the feature selection. Further, this study
applied classification models such as Support Vector Machine (SVM), Artificial Neural Network
(ANN), Random Forest (RF) and Recursive Partitioning Trees (RPT) to classified features. This
study evaluated the performance of models through precision, accuracy, recall, f-measure,
performance error metrics, and a confusion matrix. The results indicate that all the selected
ML models achieve the maximum results; however, the random forest classifier and Recursive
Partitioning Trees models outperformed with the highest achieved accuracy, 98% and
99.80%, respectively. The accuracy of SVM and ANN approaches are 83.55% and 82.60%,
respectively. In this way, this study achieved maximum accuracy compared to previous
studies.

Keywords: Software Defect Prediction, Hyoerparameters, Particle Swarm Optimization,

 Recursive Partitioning Trees, Machine Learning.

Introduction
Software Defect Prediction (SDP) is an integral aspect of the Software Development Life-Cycle
(SDLC) and is a crucial task in software engineering that can be utilized to maintain software
quality. Identifying software defects at an early stage can result in decreased development
expenses, rework efforts, and more reliable software. (Akbar et al., 2024). Ensuring the
reliability and quality of these systems is paramount, yet the complexity of software
development often leads to defects. Software defects can range from minor bugs to critical
errors that can cause system failures, leading to financial losses, compromised security, and
reduced user satisfaction (Ceylan, Kutlubay & Bener, 2016). Consequently, in today's
competitive software landscape, companies can't afford to ship buggy applications. By
embracing SDP, they can build higher-quality software more efficiently, while delighting
customers and staying ahead of the competition (Hammad, Alqaddoumi & Al-Obaidy, 2019).

As a result, software engineers must now focus on improving their ability to detect and prevent
software defects. Software Defect Prediction (SDP) is a crucial technique that identifies
potential software defects before they occur. In software engineering, SDP is an important
and challenging task. Better software quality and reduced development costs are both linked
to early defect detection in software development (Prabha & Shivakumar, 2020).

In recent times, there has been a widespread utilization of machine learning models to identify
flaws in software systems. This trend can be attributed to the capability of machine learning

mailto:Kamilsaka67@gmail.com
mailto:taiwo774@gmail.com
mailto:hikmatbello@gmail.com
mailto:Abdtosh@gmail.com
mailto:dammyconsult@gmail.com
mailto:at.ahmed@kwaracails.edu.ng

Journal of Science, Technology, Mathematics and Education (JOSTMED), 20(1), March, 2025

52

models to autonomously discern patterns within datasets, thereby facilitating the detection of
software defects. SDP serves to enhance software quality by employing diverse machine
learning methods to construct classification models, enabling efficient testing procedures. And
also software systems are integral to the functioning of businesses, industries, and daily life
which influences various machine learning techniques to predict the likelihood of defects in
software modules (Ali et al., 2024).

The quality of results obtained by feature selection techniques is very dependent on datasets.
The significance of this study lies in its potential to enhance the reliability and robustness of
software systems by predicting earlier defects and significantly lowering the costs associated
with fixing bugs later in the software development lifecycle (Anjali, et al., 2023). It is also
important to improve the allocation of testing resources by focusing on the most defect-prone
areas and providing valuable insights into the most effective machine-learning techniques for
software defect prediction. This study Reduced Debugging and Testing effort by predicting
where defects are likely to occur, software development teams can focus their testing efforts
on critical areas, saving time and resources that would otherwise be spent on exhaustive
testing. This study enhances software quality, reduces costs, mitigates risks, and supports
innovation, and ultimately leads to more efficient and reliable software development
processes.

Literature Review
Angga and Elish (2024) examined hybrid approach for effective software defect prediction:
Integrating Hybrid Grey Wolf and Particle Swarm Optimization for Enhanced Feature Selection
with Popular Gradient Boosting Algorithm. The study utilizes 13 NASA MDP datasets. These
datasets are divided into testing and training data using 10-fold cross-validation. After data is
divided, the SMOTE technique is employed in training data. The results showed that the
performance was at its best, with an average accuracy of 92%. In order to improve
performance in a cross-software defect prediction evaluation scenario, synthetic data can also
be investigated.

Aimen et al., (2023) examined a machine learning-based software defect prediction analysis.
K-means clustering was utilized in this study to categorize the class labels. Additionally,
classification models where used on specific features. Particle Swarm Optimization is utilized
to optimize ML models. Precision, accuracy, recall, f-measure, performance error measures,
and a confusion matrix were used to assess the models' performance. The findings show that
while the ML and optimized ML models produce the best outcomes, the SVM and improved
SVM models performed best, with accuracy levels of 99% and 99.80%, respectively. The
accuracy of NB, Optimized NB, RF, Optimized RF and ensemble approaches are 93.90%,
93.80%, 98.70%, 99.50%, 98.80% and 97.60, respectively. The dataset to which these
models are applied is small. The plan is to expand the dataset in the future and attempt to
examine various ensemble classifier types after using data balancing approaches. This is
because these techniques allow us to enhance error measures and achieve the best possible
results.

Karedla and Satyanada (2023) investigated the use of machine learning algorithms for
software defect prediction. Seven well-known machine learning methods for defect prediction
were the subject of our experimental investigation, which used the PROMISE datasets at both
the method and class levels. Naïvebayes and Random Forest have the best performance for
class-level datasets, with 85% and 88%, respectively, according to the results obtained. Data
imbalance and reduced dimensionality are the study's two main problems. The oversampling
and feature-selection methods aim to resolve these two issues. In subsequent research, we

Journal of Science, Technology, Mathematics and Education (JOSTMED), 20(1), March, 2025

53

will examine classification methods to address the imbalance problem of datasets for defect
prediction.

Madadi, Aravind and Kamal (2023) investigated the use of machine learning algorithms for
software defect prediction. In this investigation, machine learning techniques such as artificial
neural networks (ANNs), random forest (RF), random tree (RT), decision table (DT), linear
regression (LR), gaussian processes (GP), SMOreg, and M5P are employed. The algorithms
were tested on a publicly available dataset, and the error rates of the predicted values were
evaluated using a number of statistical techniques. The ML algorithm's accuracy, precision,
recall, F-measure, and AUC are 74.24 percent, 72%, 79%, and 0.81, respectively. The results
suggest that machine learning algorithms are useful tools for predicting future software errors.
The random tree algorithm obtained the lowest F-measures error rate for both (79% and
85%) training sets while employing percentage split testing mode.

Mengtian, Songlin, Yue, and Xu, (2022) examined Software Defect Prediction Model Based on
Complex Network and Graph Neural Network. The proposed model is tested on the PROMISE
dataset, using two graph convolution methods, based on the spectral domain and spatial
domain in the graph neural network. The investigation indicated that both convolution
methods showed an improvement in various metrics, such as accuracy 86.6%, F-measure
85.8% and MCC (Matthews’s correlation coefficient) 87.5%. respectively. So it needs high
improvement in term of speeding up the computational time and accuracy.

Alaa et. al., (2019) Dynamic Detection of Software Defects Using Supervised Learning
Techniques. They experiment with different parameter values for the classifiers and explore
the usefulness of employing dimensionality reduction techniques, such as Principle Component
Analysis (PCA), and Ensemble Learning techniques. Additionally, using PCA did not have a
noticeable impact on prediction systems performance while parameter tuning positively impact
classifies’ accuracy, especially with Artificial Neural Network (ANN). The best results are
obtained by using Ensemble Learning methods such as Bagging (95.1% accuracy with the
Mozilla dataset) and Voting (93.79% accuracy with the kc1 dataset).

Table 1: Review of Related works

Paper Authors/ Year Tittle Methodology Result and

Limitation

1 Angga et al., (2024) examined hybrid

approach for

effective

software defect

prediction

Hybrid Grey

Wolf and

Particle Swarm

Optimization for

Enhanced

Feature

Selection. The

study utilizes 13

NASA MDP

datasets

The results

showed that the

performance

was at its best,

with an average

accuracy of

92%. The study

suffer for high

feature

dimension

2 Aimen et al., (2023) propose software

defect prediction

analysis using

machine learning

techniques.

K-means

clustering for

the

categorization

of class labels

The SVM and

optimized SVM

models

outperformed

with the highest

Journal of Science, Technology, Mathematics and Education (JOSTMED), 20(1), March, 2025

54

and support

vector machine

for classification

achieved

accuracy, 96%

and 95.80%,

respectively

These models

are applied to a

limited dataset.

In the future,

we will increase

the size of the

dataset and try

to analyze

different types

of ensemble

classifiers after

applying data

balancing

techniques

because due to

balancing

technique we

can improve

error measure

as well to get

maximum

results

3 Karedla and Satyanada

(2023).

Examined

Software Defect

Prediction using

Machine Learning

Algorithms

Our

experimental

study was

conducted on

seven popular

machine

learning

techniques for

predicting

defects by using

the PROMISE

datasets at both

method-level

and class-level.

The obtained

results conclude

that Naïvebayes

has the highest

performance for

class-level

datasets with

85% and

Random Forest

performance

has 88% for

class-level

datasets. The

two major

issues in this

study are the

data imbalance

and reduced

dimensionality.

The

Journal of Science, Technology, Mathematics and Education (JOSTMED), 20(1), March, 2025

55

oversampling

and feature-

selection

methods aim to

resolve these

two issues.

4 Madadi, Aravind and

Kamal (2023)

examined

Software Defects

Prediction using

Machine Learning

Algorithms

ML algorithms

used in this

inquiry include

ANNs (artificial

neural

networks), RF

(random

forest), RT

(random tree),

DT (decision

table), LR

(linear

regression), GP

(gaussian

processes),

SMOreg, and

M5P. A publicly

accessible

dataset was

utilised to test

the algorithms

The ML
Algorithm
through
standard
deviation has an
accuracy of
74.24 percent, a
precision of
72%, a recall of
79%, an F-
measure of
75%, and an
AUC of 0.81. In
contrast, the RT
algorithm
obtained the
lowest F-
measures error
rate for both
(79% and 85%)
training sets
while employing
percentage split
testing mode.

5 Mengtian, Songlin, Yue,

& Xu, (2022)

examined

Software Defect

Prediction

Model Based on

Complex

Network and

Graph Neural

Network.

The proposed

model is tested

on the

PROMISE

dataset, using

two graph

convolution

methods,

based on the

spectral

domain and

spatial domain

in the graph

neural

network.

The

investigation

indicated that

both

convolution

methods

showed an

improvement

in various

metrics, such

as accuracy

86.6%, F-

measure

85.8% and

MCC

(Matthews’s

correlation

coefficient)

Journal of Science, Technology, Mathematics and Education (JOSTMED), 20(1), March, 2025

56

87.5%.

respectively.

So it needs

high

improvement

in term of

speeding up

the

computational

time and

accuracy.

Methodology
The software defect detection model contains several steps. Figure 1 presents the steps
followed in the development of the model. The first step is dataset acquisition from the NASA
database. The particle swarm optimization was employed as a feature selection algorithm.
Lastly, the classification of the selected features was achieved by passing them to selected
learning algorithms like SVM, RT,
RF and ANN in predicting software defects.
NASA database

Figure 1. Research Framework

Dataset Acquisition
This dataset, titled "NASA Dataset" was taken from the Kaggle website. There are 23 total
columns in the dataset, one of which is the class column that needs to be predicted. The total
dataset is made up of 10,885 rows of data points. The target feature is the column ‘defects’
which can be predicted as ‘Defects’ or ‘Non-Defects’, ‘True’ or ‘False’ while the other 22
columns are the input features. A screenshot of the NASA dataset is shown in Figure 2.

Data Acquisition

(NASA dataset)

Data Pre-

processing

Feature

Selection

Training data Prediction

Model

Output of

prediction

result

Performance

evaluation

Journal of Science, Technology, Mathematics and Education (JOSTMED), 20(1), March, 2025

57

Figure 2: NASA Dataset

The NASA dataset properties are based on Halstead Metrics, numerical data and

they may be easily gathered with any piece of software (Promise Software
Engineering Repository, 2021)

Data Preprocessing
From dataset analysis, it is concluded that the dataset needs to be transformed to a standard
format before applying any ML models, as there are 498 tuples and 23 features in the dataset.
Thus, for this purpose, a standard scaling technique is used in this study to standardize the
data set. It arranges data in a standard normal distribution. Mathematically, the standard
scalar Z can be determined as:

m =
(𝑛 − 𝑢)

𝑣
 (3.1)

where m is an observation, u is the training samples’ mean, and the training samples’ standard
deviation is v. In the dataset, we checked for null values, but there were no null values in any
tuple.

SMOTE Techniques for Overcoming Imbalance Data Issues
Smote is an oversampling technique in which false samples are manufactured for the minority
class. This strategy helps to overcome the over-fitting problem caused by random
oversampling. It concentrates on the feature space to develop new instances by using
interpolation between positive instances that are close together. The initial value of N is the
overall value of oversampling data. It is usually chosen in such a way that the binary
distribution of classes is 1:1. But depending on the situation, that might be dialled back. The
loop then starts by selecting a positive category instance at random. The KNNs for that
instance are obtained next. Finally, N is chosen to interpolate new synthetic instances from
among these K instances. The distance between the feature vector and its neighbours is
determined to achieve this using any distance metric. Now, this difference is multiplied by any
random value in [0,1] and is added to the previous feature vector. Figure 3 display
Oversampling Imbalanced Data

Journal of Science, Technology, Mathematics and Education (JOSTMED), 20(1), March, 2025

58

Figure 3: Oversampling Imbalanced Data (Source: Github, 2020).

Feature Selection
The feature selection method is used to reduce the number of features utilized in a predictive
model’s training and testing. The particle swarm optimization approach is utilized in this
research work to identify the significance of the values of a feature after preparing the dataset.
Particle Swarm Optimization (PSO) is a popular metaheuristic algorithm that can be effectively
used for this purpose. The dataset was subjected to Particle Swarm Optimization (PSO) to
choose features. Here's an overview of how PSO can be applied to feature selection in the
context of software defect prediction. The algorithm is shown in Figure 4

PSO Algorithm

Figure 4: PSO Algorithm

3.5 Classification
Supervised Machine Learning (ML) is applied to data with output class labels. There are two
portions to the data set: training and testing. The training dataset makes up 67% of the total,
whereas the testing dataset makes up just 33%. First, the data are provided with output class

Step1: Start
Step 2:. Initialization

Initialize Parameter
Initialize Population

a) Initialize Position (Xi) randomly for each particle.

b) Initialize Velocity (Vi) randomly for each particle.
Step 3: Evaluate Fitness f(Xt

i)

a) Calculate the Fitness Value for Each Particle
b) If Fitness Value is better than Best Fitness value (g Best).

c) Then
d) Set New value as new (g Best)

e) Choose the Particle with the Best Fitness Value as guest

Step 4:bFor each particle calculate the Velocity and Position
a) Calculate particle position by: Xt

i
+1 = Xt

i + Vt
i* t

b) Calculate Velocity by: 𝑣𝑘+1
𝑖 = 𝜔𝑣𝑘

𝑖 + 𝑐1𝑟1(x𝐵𝑒𝑠𝑡𝑖
𝑡 − 𝑥𝑖

𝑡) + 𝑐2𝑟2(g𝐵𝑒𝑠𝑡𝑖
𝑡 − 𝑥𝑖

𝑡)

Step 5: Evaluate Fitness f(Xt
i)

 Find Current Best [gBest]
Step 6: Updated = t + 1

Step 7: Output gBest& Xt
1

Step 8: End

Journal of Science, Technology, Mathematics and Education (JOSTMED), 20(1), March, 2025

59

labels for training purposes, and then unseen data with no output class labels are provided
for testing. We used four ML classification models for analysis, i.e., SVM, RF, ANN and RT.

Support Vector Machine
SVM is a supervised ML model mostly applied to data with two classes as output (Grishma &
Anjali, 2018). SVM models perform better with high speed if the dataset has limited data. The
SVM model is employed in this work to predict the output class label. Figure 5 displays the
SVM Algorithm as

Algorithm1: Support Vector Machine Algorithm with Particle Swarm Optimization

1. First step:
2. employ PSO to select important features
3. compute the importance score for the feature

4. 𝐹 =
𝜎1

2

𝜎2
2⁄

5. select the threshold that maximizes the model's performance
6. Reduce the variables
7. Then:
8. Make use of the SVM linear-kernel function∅(𝑋i)
9. establish the separation hyperplane
10. WT ∅(𝑋i) + 𝑏 = 0

11. Sort the data into non-fraud and fraudulent classes.

Figure 5: SVM Algorithm (Source: Naoufal & Nourdeen, 2020).

Random Forest
The RF is a classification model that employs the notion of ensemble learning, which entails
combining numerous classifiers to improve the outcome. The RF model comprises several DTs
that are applied to subsets of the data set and then averaged to determine performance
measures. The number of trees used has a significant impact on accuracy and other measures.
The model improvement, however, becomes constant after a certain number of trees.
Knowing the right amount of trees is crucial for training purposes. In this case, 1000 trees are
employed, and the random state is 42. As a classifier, Random Forest is utilized.

Artificial Neural Network
This employs multiple layers of neurons to capture complex patterns in data. Configure
layers, neurons per layer, activation functions, and optimization algorithms. Reduced Error
Pruning (REP) Tree is a decision tree with pruning to prevent overfitting.

Recursive Partitioning Trees
Recursive Partitioning Trees are a type of decision tree used in statistical modeling. and
machine learning. They work by dividing the data into subsets based on feature values to
improve prediction accuracy. This method is useful for classification and regression tasks. It
can handle both categorical and numerical data

Performance Evaluation Metrics
There are several performance evaluation metrics for evaluating the effectiveness of the
model. These evaluation metrics include:

Journal of Science, Technology, Mathematics and Education (JOSTMED), 20(1), March, 2025

60

1.1.1
1.1.2 Accuracy
It measures the proportion of total correct predictions (both true positives and true negatives)
out of all predictions made. It can be calculated from the Equation
 (3.2)

 Accuracy =
(TP+TN)

(TP+TN+FP+FN)
 (3.2)

TP = True Positive, TN = True Negative, FP = False Positive, FN = False Negative

1.1.3 Precision
It assesses the accuracy of positive predictions and can be calculated from Equation (3.3)

Precision =
TP

(TP+FP)
 (3.3)

1.1.4 Recall (Sensitivity)
It indicates the ability of the model to detect all actual positives, measuring the percentage of
true positives identified correctly. It can be calculated from the equation.

 Recall =
TP

(TP+FN)
 (3.4)

1.1.5 F1-Score
It is the harmonic mean of precision and recall. It provides a balance between the two in
cases where equilibrium is needed for effective performance evaluation. It can be calculated
from the equation.

Result and Discussion
Experimental Analysis
The Machine Learning (ML) classification experiments in this document were performed on a
Windows laptop with an Intel(R) Core (TM) i5-2410 M processor, 6 GB of primary storage and.
The ML model was implemented using the Python programming language. Python is
commonly used in predictive analytics and data science projects involving both qualitative and
quantitative data. The results of the experiments on the NASA dataset using various ML
techniques are reported.

4.1. Performance of SVM Model with PSO
Table 2: Performance Evaluation of SVM Model with PSO

Models ACCURACY(%) PRECISION

(%)

RECALL

(%)

F1-Score(%)

SVM (Training

set)

82.60 83.86 12.63 21.95

SVM (Testing set) 81.07 56.14 7.64 13.45

Journal of Science, Technology, Mathematics and Education (JOSTMED), 20(1), March, 2025

61

Figure 6: Performance of SVM with PSO Feature Selection

Figure 6 illustrates the performance of the SVM model with training and testing data. The
accuracy, precision score, recall and F1-score of the SVM model for training data are 82.6%,
83.86%, 12.63% and 21.95% respectively.

ACCURACY(%)
PRECISION
SCORE(%)

RECALL
SCORE(%)

F1-SCORE(%)

SVM (Training set) 82.6 83.86 12.63 21.95

SVM (Testing set) 81.07 56.14 7.64 13.45

0

20

40

60

80

100

Performance of SVM Model with PSO

SVM (Training set) SVM (Testing set)

Journal of Science, Technology, Mathematics and Education (JOSTMED), 20(1), March, 2025

62

Figure 7: Performance of RPT Model with PSO

Figure 7 illustrates the performance of the RPT model with training and testing data. The
accuracy, precision score, recall and F1-score of the RPT model for training data are 98.93%,
99.75%, 94.72% and 91.17% respectively.

Performance of Random Forest Model with PSO
Table 4: Performance evaluation of Random Forest Model with PSO

Models ACCURACY(%) PRECISION (%) RECALL
(%)

F1-
SCORE(%)

RFC (Training set) 98.92 99.26 95.14 97.15

RFC (Testing set) 81.17 52.49 22.67 31.67

Figure 8: Performance of RFC Model with PSO
Figure 8. Illustrates the performance of the RFC model with training and testing data. The
accuracy, precision score, recall and F1-score of the RFC model for training data are 98.92%,
99.26%, 95.14% and 97.15% respectively.

Performance of Artificial Neural Network Model with PSO

Table 5: Performance Evaluation of ANN Model with PSO
The performance of the ANN Model is shown in Table 5 and the graph representation is
given in Figure 9.

ACCURACY(%) PRECISION SCORE(%) RECALL SCORE(%) F1-SCORE(%)

RFC (Training set) 98.92 99.26 95.14 97.15

RFC (Testing set) 81.17 52.49 22.67 31.67

0
20
40
60
80

100
120

Performance of RFC Model

RFC (Training set) RFC (Testing set)

Journal of Science, Technology, Mathematics and Education (JOSTMED), 20(1), March, 2025

63

Figure 9 illustrates the performance of the ANN model with training and testing data. The
accuracy, precision score, recall and F1-score of the ANN model for training data are 83.85%,
75.50%, 24.67% and 37.18% respectively.

Comparative Analysis of all the Models
The comparative analysis of learning techniques is compared as shown in Table 6 and the
graphical representation is displayed in Figure 10.

Table 6: Analysis of SVM, RPT, RFC and ANN Models with PSO

Models ACCURACY(%) PRECISION
(%)

RECALL (%) F1-SCORE(%)

SVM (Training set) 82.60 83.86 12.63 21.95

RPT (Training set) 98.93 99.75 94.72 91.17

RFC (Training set) 98.92 99.26 95.14 97.15

ANN (Training set) 83.85 75.50 24.67 37.18

ACCURACY(%) PRECISION SCORE(%) RECALL SCORE(%) F1-SCORE(%)

ANN (Training set) 83.85 75.5 24.67 37.18

ANN (Testing set) 80.52 48.32 17.18 25.35

0

10

20

30

40

50

60

70

80

90

Performance of ANN Model

ANN (Training set) ANN (Testing set)

Journal of Science, Technology, Mathematics and Education (JOSTMED), 20(1), March, 2025

64

Figure 10: Analysis of all Models with PSO

Figure 10 illustrates how the RPT model performed better than the other models. The precision
score, recall, F1-score, and accuracy of the RPT model are 99.75%, 94.72%, and 98.93%,
respectively. According to the results of the performance measurements acquired, the RPT
model outperformed the RFC model.

Performance Evaluation with the Existing Work
The developed model was compared with existing work as shown in Table 7.
Table 7: Comparison with existing work

Research paper Authors

and Year

Methodology Results

Research on Software Defect

Prediction Model Based on

Complex Network and Graph

Neural Network

Mengtian, S

onglin, Yue,

& Xu,

(2022)

Complex

Network and

Graph Neural

Network

 Accuracy= 86.6%

F-Measure=85.8%
Matthews correlation

coefficient=73.5%

examined Software Defects

Prediction using Machine

Learning Algorithms.

Madadi,

Aravind and

Kamal

(2023)

ANNs (artificial

neural networks),

RF (random

forest), RT

(random tree),

DT (decision

table), LR (linear

regression), GP

RPT Accuracy = 74.24

%,

Precision=72%%,

 Recall=79%,

F1-Score=75%, %

ACCURACY(%)
PRECISION
SCORE(%)

RECALL SCORE(%) F1-SCORE(%)

SVM (Training set) 82.6 83.86 12.63 21.95

RPT (Training set) 98.93 99.75 94.72 91.17

RFC (Training set) 98.92 99.26 95.14 97.15

ANN (Training set) 83.85 75.5 24.67 37.18

0

20

40

60

80

100

120
A

xi
s

Ti
tl

e
Analysis of SVM, RPT, RFC and ANN Models

Journal of Science, Technology, Mathematics and Education (JOSTMED), 20(1), March, 2025

65

(gaussian

processes),

SMOreg, and

M5P.

Developed Model

2024

SVM, RPT, RFC

& ANN

RPT Accuracy= 98.93%

Precision=99.75%

Recall = 94.72%

F1-Score=91.17%

The NASA database was employed as the standard database and the result has shown that
the developed model outperformed the existing work in terms of Accuracy, precision, Recall
and F1-Score.

Conclusion
In this research, ML techniques are utilized with feature selection techniques for software
defect prediction. This research examined various well-known ML techniques on a freely
available dataset to improve the accuracy of the dataset in comparison with previous research.
All ML models are trained and tested through Python programming language using Jupyter
Notebook. The analysis aimed to improve the accuracy performance of ML on the NASA
dataset. Using NASA datasets, the effectiveness of several well-known machine learning
classifiers, including Support Vector Machine (SVM), Random Forest, Recursive Partitioning
Trees (Rep.Tree) and Artificial Neural Networks (ANN), was assessed for software defect
prediction. The results showed that the RPT model performed better than all other models in
terms of accuracy, precision score, recall, and F1 score. The RPT Classifier's accuracy,
precision, recall, and F1-Score with the NASA dataset are 98.93%, 99.75%, 94.72%, and
91.17% respectively. Since RPT outperforms several other models in terms of classification, it
is advised to utilize it in conjunction with PSO techniques for software fault prediction. To
better the research in the future, scientists can additionally focus on the following. enhance
model training, particularly when working with unbalanced datasets, devise techniques for
augmenting defect data.

References
Akbar, A. M., Herteno, R., Saputro, S. W., Faisal, M. R., & Nugroho, R. A. (2024). Optimizing

software defect prediction models: Integrating hybrid grey wolf and particle swarm
optimization for enhanced feature selection with popular gradient boosting
Algorithm. Journal of Electronics, Electromedical Engineering, and Medical
Informatics, 6(2), 169-181.

Angga, K. O., & Elish, M. O. (2008). Predicting defect-prone software modules using support
vector machines. Journal of Systems and Software, 81(5), 649-660.

Alaa, H., Huang, S., Wu, Y., Hui, Z., & Zheng, C. (2019). A new weighted naive Bayes method

based on information diffusion for software defect prediction. Journal of Software
Quality 27(3), 923-968.

Journal of Science, Technology, Mathematics and Education (JOSTMED), 20(1), March, 2025

66

Ali, M., Mazhar, T., Al-Rasheed, A., Shahzad, T., Ghadi, Y. Y., & Khan, M. A. (2024).

Enhancing software defect prediction: A framework with improved feature selection and
ensemble machine learning. PeerJ Computer Science, 10, e1860.

Anjali, C., Punitha Malar Dhas, J., & Amar Pratap Singh, J. (2023). Automated program and

software defect root cause analysis using machine learning techniques. Journal of e-
Informatics Software Engineering, 64(4), 878-885.

Aimen, K., Gran, B., Nasir, A., Muhammad, S., & Mohamed, G. (2023). Software defect

prediction analysis using machine learning techniques. Sustainability, 2, 15, 5517.
https://doi.org/10.3390/su15065517

Ceylan, E., Kutlubay, F. O., & Bener, A. B. (2016). Software defect identification using machine

learning techniques. In 32nd EUROMICRO Conference on Software Engineering and
Advanced Applications, 240-247.

Hammad, M., Alqaddoumi, A., & Al-Obaidy, H. (2019). Predicting software faults based on k-

nearest neighbors classification. International Journal of Computing and Digital
Systems, 8(5), 462-467.

Jyothi k., Aravind, E., & Kamal, M.V. (2023). Predicting faults in high assurance software. in

Proceedings of IEEE International Symposium on High Assurance Systems Engineering,
2010, pp. 26–34. doi: 10.1109/HASE.2010.29.

Karedla, C., & Satyanada, R. (2023) Software Defect Prediction using Machine Learning

Algorithms. Journal of emerging technologies and innovative research. An international
Scholarly Open Access, Peer Reviewed Refered Journal. www.jetir.org(ISSN-2349-5162).

Madadi, N., Aravind, Y., & Kamal, D. (2023). A feature selection framework for software defect

prediction. In 2023 IEEE 38th annual computer software and applications conference, pp.
426-435.

Prabha, C. L., & Shivakumar, N. (2020, June). Software defect prediction using machine

learning techniques. In 2020 4th International Conference on Trends in Electronics and
Informatics (ICOEI) pp. 728-733.

https://doi.org/10.3390/su15065517

