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Abstract 
A common challenge in machine learning is selecting the optimal model hyperparameters. 
However, almost all studies in Software Defection Prediction (SDP) using machine learning 
models did not perform hyperparameter tuning to obtain the optimal model hyperparameters. 
As a result, this study examined selected Machine Learning (ML) techniques on a freely 
available data set. The purpose of the research was to improve the model performance in 
terms of accuracy, precision and f1 score of the dataset compared to previous research. As 
previous investigations show, the accuracy can be further improved. For this purpose, this 
study employed Particle Swarm Optimization for the feature selection. Further, this study 
applied classification models such as Support Vector Machine (SVM), Artificial Neural Network 
(ANN), Random Forest (RF) and Recursive Partitioning Trees (RPT) to classified features. This 
study evaluated the performance of models through precision, accuracy, recall, f-measure, 
performance error metrics, and a confusion matrix. The results indicate that all the selected 
ML models achieve the maximum results; however, the random forest classifier and Recursive 
Partitioning Trees models outperformed with the highest achieved accuracy, 98% and 
99.80%, respectively. The accuracy of SVM and ANN approaches are 83.55% and 82.60%, 
respectively. In this way, this study achieved maximum accuracy compared to previous 
studies. 

 
Keywords: Software Defect Prediction, Hyoerparameters, Particle Swarm Optimization,  

        Recursive Partitioning Trees, Machine Learning. 
 
Introduction 
Software Defect Prediction (SDP) is an integral aspect of the Software Development Life-Cycle 
(SDLC) and is a crucial task in software engineering that can be utilized to maintain software 
quality. Identifying software defects at an early stage can result in decreased development 
expenses, rework efforts, and more reliable software.  (Akbar et al., 2024). Ensuring the 
reliability and quality of these systems is paramount, yet the complexity of software 
development often leads to defects. Software defects can range from minor bugs to critical 
errors that can cause system failures, leading to financial losses, compromised security, and 
reduced user satisfaction (Ceylan, Kutlubay & Bener, 2016). Consequently, in today's 
competitive software landscape, companies can't afford to ship buggy applications. By 
embracing SDP, they can build higher-quality software more efficiently, while delighting 
customers and staying ahead of the competition (Hammad, Alqaddoumi & Al-Obaidy, 2019). 
 
As a result, software engineers must now focus on improving their ability to detect and prevent 
software defects. Software Defect Prediction (SDP) is a crucial technique that identifies 
potential software defects before they occur. In software engineering, SDP is an important 
and challenging task. Better software quality and reduced development costs are both linked 
to early defect detection in software development (Prabha & Shivakumar, 2020).  
 
In recent times, there has been a widespread utilization of machine learning models to identify 
flaws in software systems. This trend can be attributed to the capability of machine learning 
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models to autonomously discern patterns within datasets, thereby facilitating the detection of 
software defects. SDP serves to enhance software quality by employing diverse machine 
learning methods to construct classification models, enabling efficient testing procedures. And 
also software systems are integral to the functioning of businesses, industries, and daily life 
which influences various machine learning techniques to predict the likelihood of defects in 
software modules (Ali et al., 2024). 
 
The quality of results obtained by feature selection techniques is very dependent on datasets. 
The significance of this study lies in its potential to enhance the reliability and robustness of 
software systems by predicting earlier defects and significantly lowering the costs associated 
with fixing bugs later in the software development lifecycle (Anjali, et al., 2023). It is also 
important to improve the allocation of testing resources by focusing on the most defect-prone 
areas and providing valuable insights into the most effective machine-learning techniques for 
software defect prediction. This study Reduced Debugging and Testing effort by predicting 
where defects are likely to occur, software development teams can focus their testing efforts 
on critical areas, saving time and resources that would otherwise be spent on exhaustive 
testing. This study enhances software quality, reduces costs, mitigates risks, and supports 
innovation, and ultimately leads to more efficient and reliable software development 
processes. 
 
Literature Review 
Angga and Elish (2024) examined hybrid approach for effective software defect prediction: 
Integrating Hybrid Grey Wolf and Particle Swarm Optimization for Enhanced Feature Selection 
with Popular Gradient Boosting Algorithm. The study utilizes 13 NASA MDP datasets. These 
datasets are divided into testing and training data using 10-fold cross-validation. After data is 
divided, the SMOTE technique is employed in training data. The results showed that the 
performance was at its best, with an average accuracy of 92%. In order to improve 
performance in a cross-software defect prediction evaluation scenario, synthetic data can also 
be investigated. 
 
Aimen et al., (2023) examined a machine learning-based software defect prediction analysis. 
K-means clustering was utilized in this study to categorize the class labels. Additionally, 
classification models where used on specific features. Particle Swarm Optimization is utilized 
to optimize ML models. Precision, accuracy, recall, f-measure, performance error measures, 
and a confusion matrix were used to assess the models' performance. The findings show that 
while the ML and optimized ML models produce the best outcomes, the SVM and improved 
SVM models performed best, with accuracy levels of 99% and 99.80%, respectively. The 
accuracy of NB, Optimized NB, RF, Optimized RF and ensemble approaches are 93.90%, 
93.80%, 98.70%, 99.50%, 98.80% and 97.60, respectively. The dataset to which these 
models are applied is small. The plan is to expand the dataset in the future and attempt to 
examine various ensemble classifier types after using data balancing approaches. This is 
because these techniques allow us to enhance error measures and achieve the best possible 
results. 
 
Karedla and Satyanada (2023) investigated the use of machine learning algorithms for 
software defect prediction. Seven well-known machine learning methods for defect prediction 
were the subject of our experimental investigation, which used the PROMISE datasets at both 
the method and class levels. Naïvebayes and Random Forest have the best performance for 
class-level datasets, with 85% and 88%, respectively, according to the results obtained. Data 
imbalance and reduced dimensionality are the study's two main problems. The oversampling 
and feature-selection methods aim to resolve these two issues. In subsequent research, we 
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will examine classification methods to address the imbalance problem of datasets for defect 
prediction. 
 
Madadi, Aravind and Kamal (2023) investigated the use of machine learning algorithms for 
software defect prediction. In this investigation, machine learning techniques such as artificial 
neural networks (ANNs), random forest (RF), random tree (RT), decision table (DT), linear 
regression (LR), gaussian processes (GP), SMOreg, and M5P are employed. The algorithms 
were tested on a publicly available dataset, and the error rates of the predicted values were 
evaluated using a number of statistical techniques. The ML algorithm's accuracy, precision, 
recall, F-measure, and AUC are 74.24 percent, 72%, 79%, and 0.81, respectively. The results 
suggest that machine learning algorithms are useful tools for predicting future software errors. 
The random tree algorithm obtained the lowest F-measures error rate for both (79% and 
85%) training sets while employing percentage split testing mode. 
 
Mengtian, Songlin, Yue, and Xu, (2022) examined Software Defect Prediction Model Based on 
Complex Network and Graph Neural Network. The proposed model is tested on the PROMISE 
dataset, using two graph convolution methods, based on the spectral domain and spatial 
domain in the graph neural network. The investigation indicated that both convolution 
methods showed an improvement in various metrics, such as accuracy 86.6%, F-measure 
85.8% and MCC (Matthews’s correlation coefficient) 87.5%. respectively. So it needs high 
improvement in term of speeding up the computational time and accuracy.   
 
Alaa et. al., (2019) Dynamic Detection of Software Defects Using Supervised Learning 
Techniques. They experiment with different parameter values for the classifiers and explore 
the usefulness of employing dimensionality reduction techniques, such as Principle Component 
Analysis (PCA), and Ensemble Learning techniques. Additionally, using PCA did not have a 
noticeable impact on prediction systems performance while parameter tuning positively impact 
classifies’ accuracy, especially with Artificial Neural Network (ANN). The best results are 
obtained by using Ensemble Learning methods such as Bagging (95.1% accuracy with the 
Mozilla dataset) and Voting (93.79% accuracy with the kc1 dataset). 
 
Table 1: Review of Related works 

Paper Authors/ Year Tittle Methodology Result and 

Limitation 

1 Angga et al., (2024) examined hybrid 

approach for 

effective 

software defect 

prediction 

Hybrid Grey 

Wolf and 

Particle Swarm 

Optimization for 

Enhanced 

Feature 

Selection. The 

study utilizes 13 

NASA MDP 

datasets 

The results 

showed that the 

performance 

was at its best, 

with an average 

accuracy of 

92%. The study 

suffer for high 

feature 

dimension 

2 Aimen et al., (2023) propose software 

defect prediction 

analysis using 

machine learning 

techniques. 

K-means 

clustering for 

the 

categorization 

of class labels 

The SVM and 

optimized SVM 

models 

outperformed 

with the highest 
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and support 

vector machine 

for classification 

achieved 

accuracy, 96% 

and 95.80%, 

respectively 

These models 

are applied to a 

limited dataset. 

In the future, 

we will increase 

the size of the 

dataset and try 

to analyze 

different types 

of ensemble 

classifiers after 

applying data 

balancing 

techniques 

because due to 

balancing 

technique we 

can improve 

error measure 

as well to get 

maximum 

results 

 

3 Karedla and Satyanada 

(2023).   

Examined  

Software Defect 

Prediction using 

Machine Learning 

Algorithms 

Our 

experimental 

study was 

conducted on 

seven popular 

machine 

learning 

techniques for 

predicting 

defects by using 

the PROMISE 

datasets at both 

method-level 

and class-level. 

The obtained 

results conclude 

that Naïvebayes 

has the highest 

performance for 

class-level 

datasets with 

85% and 

Random Forest 

performance 

has 88% for 

class-level 

datasets. The 

two major 

issues in this 

study are the 

data imbalance 

and reduced 

dimensionality. 

The 
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oversampling 

and feature-

selection 

methods aim to 

resolve these 

two issues. 

4 Madadi, Aravind and 

Kamal (2023) 

examined 

Software Defects 

Prediction using 

Machine Learning 

Algorithms 

ML algorithms 

used in this 

inquiry include 

ANNs (artificial 

neural 

networks), RF 

(random 

forest), RT 

(random tree), 

DT (decision 

table), LR 

(linear 

regression), GP 

(gaussian 

processes), 

SMOreg, and 

M5P. A publicly 

accessible 

dataset was 

utilised to test 

the algorithms 

The ML 
Algorithm 
through 
standard 
deviation has an 
accuracy of 
74.24 percent, a 
precision of 
72%, a recall of 
79%, an F-
measure of 
75%, and an 
AUC of 0.81. In 
contrast, the RT 
algorithm 
obtained the 
lowest F-
measures error 
rate for both 
(79% and 85%) 
training sets 
while employing 
percentage split 
testing mode. 
 

5 Mengtian, Songlin, Yue, 

& Xu, (2022) 

examined 

Software Defect 

Prediction 

Model Based on 

Complex 

Network and 

Graph Neural 

Network. 

The proposed 

model is tested 

on the 

PROMISE 

dataset, using 

two graph 

convolution 

methods, 

based on the 

spectral 

domain and 

spatial domain 

in the graph 

neural 

network. 

The 

investigation 

indicated that 

both 

convolution 

methods 

showed an 

improvement 

in various 

metrics, such 

as accuracy 

86.6%, F-

measure 

85.8% and 

MCC 

(Matthews’s 

correlation 

coefficient) 
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87.5%. 

respectively. 

So it needs 

high 

improvement 

in term of 

speeding up 

the 

computational 

time and 

accuracy.   

 
Methodology 
The software defect detection model contains several steps. Figure 1 presents the steps 
followed in the development of the model. The first step is dataset acquisition from the NASA 
database. The particle swarm optimization was employed as a feature selection algorithm. 
Lastly, the classification of the selected features was achieved by passing them to selected 
learning algorithms like SVM, RT, 
RF and ANN in predicting software defects. 
NASA database 
 

 
 

 
 
 
 
 
 
 
 
 
 

Figure 1. Research Framework 
 
Dataset Acquisition 
This dataset, titled "NASA Dataset" was taken from the Kaggle website. There are 23 total 
columns in the dataset, one of which is the class column that needs to be predicted. The total 
dataset is made up of 10,885 rows of data points. The target feature is the column ‘defects’ 
which can be predicted as ‘Defects’ or ‘Non-Defects’, ‘True’ or ‘False’ while the other 22 
columns are the input features.  A screenshot of the NASA dataset is shown in Figure 2. 
 

Data Acquisition 

(NASA dataset)  
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Training data Prediction 

Model 

Output of 

prediction 

result 

Performance 
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Figure 2: NASA Dataset 
 
The NASA dataset properties are based on Halstead Metrics, numerical data and 

they may be easily gathered with any piece of software (Promise Software 
Engineering Repository, 2021) 

  
Data Preprocessing 
From dataset analysis, it is concluded that the dataset needs to be transformed to a standard 
format before applying any ML models, as there are 498 tuples and 23 features in the dataset. 
Thus, for this purpose, a standard scaling technique is used in this study to standardize the 
data set. It arranges data in a standard normal distribution. Mathematically, the standard 
scalar Z can be determined as: 

m =
(𝑛 − 𝑢)

𝑣
                                                                                                                                               (3.1) 

where m is an observation, u is the training samples’ mean, and the training samples’ standard 
deviation is v. In the dataset, we checked for null values, but there were no null values in any 
tuple. 
 
SMOTE Techniques for Overcoming Imbalance Data Issues  
Smote is an oversampling technique in which false samples are manufactured for the minority 
class. This strategy helps to overcome the over-fitting problem caused by random 
oversampling. It concentrates on the feature space to develop new instances by using 
interpolation between positive instances that are close together. The initial value of N is the 
overall value of oversampling data. It is usually chosen in such a way that the binary 
distribution of classes is 1:1. But depending on the situation, that might be dialled back. The 
loop then starts by selecting a positive category instance at random. The KNNs for that 
instance are obtained next. Finally, N is chosen to interpolate new synthetic instances from 
among these K instances. The distance between the feature vector and its neighbours is 
determined to achieve this using any distance metric. Now, this difference is multiplied by any 
random value in [0,1] and is added to the previous feature vector.  Figure 3 display 
Oversampling Imbalanced Data   
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Figure 3: Oversampling Imbalanced Data (Source: Github, 2020). 

 
Feature Selection 
The feature selection method is used to reduce the number of features utilized in a predictive 
model’s training and testing. The particle swarm optimization approach is utilized in this 
research work to identify the significance of the values of a feature after preparing the dataset. 
Particle Swarm Optimization (PSO) is a popular metaheuristic algorithm that can be effectively 
used for this purpose. The dataset was subjected to Particle Swarm Optimization (PSO) to 
choose features. Here's an overview of how PSO can be applied to feature selection in the 
context of software defect prediction. The algorithm is shown in Figure 4 
 
PSO Algorithm  
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
  
 
 

Figure 4: PSO Algorithm 
 
 
 

3.5 Classification 
Supervised Machine Learning (ML) is applied to data with output class labels. There are two 
portions to the data set: training and testing. The training dataset makes up 67% of the total, 
whereas the testing dataset makes up just 33%. First, the data are provided with output class 

Step1: Start 
Step 2:.  Initialization  

Initialize Parameter 
Initialize Population  

a) Initialize Position (Xi) randomly for each particle. 

b) Initialize Velocity (Vi) randomly for each particle. 
Step 3: Evaluate Fitness f(Xt

i) 

a) Calculate the Fitness Value for Each Particle 
b) If Fitness Value is better than Best Fitness value (g Best ). 

c) Then 
d) Set New value as new (g Best) 

e) Choose the Particle with the Best Fitness Value as guest 

Step 4:bFor each particle calculate the Velocity and Position 
a) Calculate particle position by: Xt

i
+1 = Xt

i + Vt
i* t 

b) Calculate Velocity by: 𝑣𝑘+1
𝑖  = 𝜔𝑣𝑘

𝑖  + 𝑐1𝑟1(x𝐵𝑒𝑠𝑡𝑖
𝑡 − 𝑥𝑖

𝑡) + 𝑐2𝑟2(g𝐵𝑒𝑠𝑡𝑖
𝑡 − 𝑥𝑖

𝑡) 

Step 5:  Evaluate Fitness f( Xt
i) 

 Find Current Best [gBest] 
Step 6: Updated = t + 1 

Step 7: Output gBest& Xt
1 

Step 8: End 
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labels for training purposes, and then unseen data with no output class labels are provided 
for testing. We used four ML classification models for analysis, i.e., SVM, RF, ANN and RT. 
 
Support Vector Machine 
SVM is a supervised ML model mostly applied to data with two classes as output (Grishma & 
Anjali, 2018). SVM models perform better with high speed if the dataset has limited data. The 
SVM model is employed in this work to predict the output class label. Figure 5 displays the 
SVM Algorithm as  
 
 
Algorithm1: Support Vector Machine Algorithm with Particle Swarm Optimization 

1.              First step: 
2.              employ PSO to select important features 
3.              compute the importance score for the feature 

4.              𝐹 =  
𝜎1

2

𝜎2
2⁄  

5.              select the threshold that maximizes the model's performance              
6.              Reduce the variables 
7.              Then: 
8.              Make use of the SVM linear-kernel function∅(𝑋i) 
9.               establish the separation hyperplane 
10.               WT ∅(𝑋i) + 𝑏 = 0 

11.                Sort the data into non-fraud and fraudulent classes. 
              
Figure 5: SVM Algorithm (Source: Naoufal & Nourdeen, 2020). 

 
Random Forest 
The RF is a classification model that employs the notion of ensemble learning, which entails 
combining numerous classifiers to improve the outcome. The RF model comprises several DTs 
that are applied to subsets of the data set and then averaged to determine performance 
measures. The number of trees used has a significant impact on accuracy and other measures. 
The model improvement, however, becomes constant after a certain number of trees. 
Knowing the right amount of trees is crucial for training purposes. In this case, 1000 trees are 
employed, and the random state is 42. As a classifier, Random Forest is utilized.   
 
Artificial Neural Network 
This employs multiple layers of neurons to capture complex patterns in data. Configure 
layers, neurons per layer, activation functions, and optimization algorithms. Reduced Error 
Pruning (REP) Tree is a decision tree with pruning to prevent overfitting.  
 
Recursive Partitioning Trees 
Recursive Partitioning Trees are a type of decision tree used in statistical modeling. and 
machine learning. They work by dividing the data into subsets based on feature values to 
improve prediction accuracy. This method is useful for classification and regression tasks. It 
can handle both categorical and numerical data 
 
Performance Evaluation Metrics 
There are several performance evaluation metrics for evaluating the effectiveness of the 
model. These evaluation metrics include: 



  
Journal of Science, Technology, Mathematics and Education (JOSTMED), 20(1), March, 2025 

60 
 

1.1.1  
1.1.2 Accuracy  
It measures the proportion of total correct predictions (both true positives and true negatives) 
out of all predictions made. It can be calculated from the Equation   
 (3.2) 

                               Accuracy =  
(TP+TN)

(TP+TN+FP+FN)
                                          (3.2) 

TP = True Positive, TN = True Negative, FP = False Positive, FN = False Negative 

1.1.3 Precision 
It assesses the accuracy of positive predictions and can be calculated from Equation (3.3) 

Precision = 
TP

(TP+FP)
                           (3.3) 

1.1.4 Recall (Sensitivity) 
It indicates the ability of the model to detect all actual positives, measuring the percentage of 
true positives identified correctly. It can be calculated from the equation. 

                                                Recall = 
TP

(TP+FN)
                                                (3.4) 

1.1.5 F1-Score 
It is the harmonic mean of precision and recall. It provides a balance between the two in 
cases where equilibrium is needed for effective performance evaluation. It can be calculated 
from the equation. 
 
Result and Discussion 
Experimental Analysis 
The Machine Learning (ML) classification experiments in this document were performed on a 
Windows laptop with an Intel(R) Core (TM) i5-2410 M processor, 6 GB of primary storage and. 
The ML model was implemented using the Python programming language. Python is 
commonly used in predictive analytics and data science projects involving both qualitative and 
quantitative data.  The results of the experiments on the NASA dataset using various ML 
techniques are reported. 
 
4.1.   Performance of SVM Model with PSO 
Table 2: Performance Evaluation of SVM Model with PSO 

Models ACCURACY(%) PRECISION 

(%) 

RECALL 

(%) 

F1-Score(%) 

SVM (Training 

set) 

82.60 83.86 12.63 21.95 

SVM (Testing set) 81.07 56.14 7.64 13.45 
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Figure 6: Performance of SVM with PSO Feature Selection 

 
Figure 6 illustrates the performance of the SVM model with training and testing data. The 
accuracy, precision score, recall and F1-score of the SVM model for training data are 82.6%, 
83.86%, 12.63% and 21.95% respectively. 
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Figure 7:  Performance of RPT Model with PSO 
 

Figure 7 illustrates the performance of the RPT model with training and testing data. The 
accuracy, precision score, recall and F1-score of the RPT model for training data are 98.93%, 
99.75%, 94.72% and 91.17% respectively. 
 
Performance of Random Forest Model with PSO 
Table 4: Performance evaluation of Random Forest Model with PSO 

Models ACCURACY(%) PRECISION (%) RECALL 
(%) 

F1-
SCORE(%) 

RFC (Training set) 98.92 99.26 95.14 97.15 

RFC (Testing set) 81.17 52.49 22.67 31.67 

 

 
 
Figure 8:  Performance of RFC Model with PSO 
Figure 8. Illustrates the performance of the RFC model with training and testing data. The 
accuracy, precision score, recall and F1-score   of the RFC model for training data are 98.92%, 
99.26%, 95.14% and 97.15% respectively. 
 
Performance of Artificial Neural Network Model with PSO 
 
Table 5: Performance Evaluation of ANN Model with PSO 
The performance of the ANN Model is shown in Table 5 and the graph representation is 
given in Figure 9. 
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Figure 9 illustrates the performance of the ANN model with training and testing data. The 
accuracy, precision score, recall and F1-score of the ANN model for training data are 83.85%, 
75.50%, 24.67% and 37.18% respectively. 
 
Comparative Analysis of all the Models 
The comparative analysis of learning techniques is compared as shown in Table 6 and the 
graphical representation is displayed in Figure 10. 
 
Table 6: Analysis of SVM, RPT, RFC and ANN Models with PSO 

Models ACCURACY(%) PRECISION 
(%) 

RECALL (%) F1-SCORE(%) 

SVM (Training set) 82.60 83.86 12.63 21.95 

RPT (Training set) 98.93 99.75 94.72 91.17 

RFC (Training set) 98.92 99.26 95.14 97.15 

ANN (Training set) 83.85 75.50 24.67 37.18 
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Figure 10:  Analysis of all Models with PSO 
 
Figure 10 illustrates how the RPT model performed better than the other models. The precision 
score, recall, F1-score, and accuracy of the RPT model are 99.75%, 94.72%, and 98.93%, 
respectively. According to the results of the performance measurements acquired, the RPT 
model outperformed the RFC model. 
 
Performance Evaluation with the Existing Work 
The developed model was compared with existing work as shown in Table 7. 
Table 7: Comparison with existing work 

Research paper Authors 

and Year 

Methodology Results 

Research on Software Defect 

Prediction Model Based on 

Complex Network and Graph 

Neural Network 

Mengtian, S

onglin, Yue, 

& Xu, 

(2022) 

Complex 

Network and 

Graph Neural 

Network 

 Accuracy= 86.6%  

F-Measure=85.8% 
Matthews correlation 

coefficient=73.5% 

examined Software Defects 

Prediction using Machine 

Learning Algorithms. 

Madadi, 

Aravind and 

Kamal 

(2023) 

ANNs (artificial 

neural networks), 

RF (random 

forest), RT 

(random tree), 

DT (decision 

table), LR (linear 

regression), GP 

RPT Accuracy = 74.24 

%,  

Precision=72%%, 

 Recall=79%, 

F1-Score=75%, % 

ACCURACY(%)
PRECISION
SCORE(%)

RECALL SCORE(%) F1-SCORE(%)

SVM (Training set) 82.6 83.86 12.63 21.95

RPT (Training set) 98.93 99.75 94.72 91.17

RFC (Training set) 98.92 99.26 95.14 97.15

ANN (Training set) 83.85 75.5 24.67 37.18
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(gaussian 

processes), 

SMOreg, and 

M5P. 

 

Developed Model 

 

 

 

 

 

 

2024 

 

 

 

 

 

SVM, RPT, RFC 

& ANN 

 

 

 

 

RPT Accuracy= 98.93% 

Precision=99.75% 

Recall = 94.72% 

F1-Score=91.17% 

 

 

 

 

The NASA database was employed as the standard database and the result has shown that 
the developed model outperformed the existing work in terms of Accuracy, precision, Recall 
and F1-Score.  
 
Conclusion 
In this research, ML techniques are utilized with feature selection techniques for software 
defect prediction. This research examined various well-known ML techniques on a freely 
available dataset to improve the accuracy of the dataset in comparison with previous research.  
All ML models are trained and tested through Python programming language using Jupyter 
Notebook. The analysis aimed to improve the accuracy performance of ML on the NASA 
dataset. Using NASA datasets, the effectiveness of several well-known machine learning 
classifiers, including Support Vector Machine (SVM), Random Forest, Recursive Partitioning 
Trees (Rep.Tree) and Artificial Neural Networks (ANN), was assessed for software defect 
prediction. The results showed that the RPT model performed better than all other models in 
terms of accuracy, precision score, recall, and F1 score. The RPT Classifier's accuracy, 
precision, recall, and F1-Score with the NASA dataset are 98.93%, 99.75%, 94.72%, and 
91.17% respectively. Since RPT outperforms several other models in terms of classification, it 
is advised to utilize it in conjunction with PSO techniques for software fault prediction. To 
better the research in the future, scientists can additionally focus on the following. enhance 
model training, particularly when working with unbalanced datasets, devise techniques for 
augmenting defect data. 
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