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Abstract 
A linear programming method and the application to a Markov decision model of human health 
conditions are discussed in this paper. This approach involves the use of simplex method to 
solve a linear program model formulated with discrete time Markov decision processes in 
contrast to the policy- iteration algorithm. The model was initially formulated and solved with 
policy iteration method and now verified on identical data using linear programming. The result 
obtained is in agreement with the policy- iteration method. However, the linear programming 
method has the advantage of wide spread and simple computer software that can easily be 
used,   unlike the policy- iteration algorithm that may demand writing its own computer codes 
by the individual. It is important to observe that the two methods are very efficient to 
determine the long-run fraction of time that a man is in a poor condition of health. 
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Introduction 

Linear programming is an optimization technique. It receives so much attention in recent 

years due to the availability of the methods of solution to the general linear programming 

problems involving large variables Diego and German (2006) and Abubakar(2005). Linear 

programming formulation of Markov Decision processes has been reported  also in Diego and 

German (2006) and Tijm(1988). The application of Markov decision model to study human 

health conditions is discussed in Abubakar(2011). In  that work, policy- iteration was used and  

found to be  very involving and cumbersome, it is therefore necessary to seek for alternative  

method and that is the issue addressed in  this paper; the linear programming approach. 

 

Markov Decision Processes  and Linear Programming.  

According to Kurkani (1999), Puterman (1994), Goto et al (2004) and Hillier and 

Lieberman(1980); we consider a Discrete Time Markov Chain (DTMC) {Xn, n = 0, 1,...}, whose 

transition probability matrix depends on the action taken An. Additionally, the system incurs  a 

cost c( i, a) when an action a is chosen at some state i. Then the joint process {(Xn, An), n=0, 

1,...}, is a Discrete Time Markov Decision Process (DTMDP). 
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The policy-iteration algorithm solves the following   average cost optimality equation in a 

finite number of steps by generating a sequence of improving policies. 

It was observed in Abubakar(2011) that the  finite convergence of the policy-iteration algorithm 

implies that numbers  and , , exist which satisfy the  

 

 =  ,    …………………………………………………… (1) 

I is the set of  states. The constant  is uniquely determined as the minimum  average cost 

per unit time, that is 

 

  

Moreover, each stationary policy  such that the action  minimizes the right side of (1) for 

all  is average cost optimal Tijm (1988). 

 Another convenient way of solving the optimality equation is the application of a linear 

programming formulation for the average cost case. 

According to Diego and German (2006), the next model specifies how to obtain an 

optimal average cost using linear programming tools. 

 Min           

subject to          

 

                      Balance equation 

 

                  Normalization equation, S is the set of all allowable states.  

This model is not linear. But if we define new decision variable 

, then we can build an equivalent linear model. The meaning of 

is the long run fraction of the time that the system is in state  i  and action  is chosen. 

             Min                                                      
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              subject to 

   -     = 0                             

                                                                             

                                                                 

Where  is the set of possible predecessors of state . 

 i.e.  = . Once the model is solved, to recover the 

quantities of interest you must follow the following steps: 

· Stationary Distribution 

     =      

· Value Function:  This is the optimal objective value obtained by linear programming, 

note that the same value function applies for each state, due to be  solved for the 

average problem. 

· Decision Rule: It can be shown that there exists a deterministic decision rule, instead of 

a randomized one. If the transition probability matrix of every stationary policy is 

irreducible, the next statement shows how to get in general way. 

                                                        

However, if there is no knowledge about how is the performance of the discrete time 

Markov decision process (DTMDP), the next statement could be  used, due to a DTMDP 

always obtain a deterministic decision rule. 

 

Where, 

 

 Denardo and Fox( 1968)  gives the following  linear programming algorithm which was used in 

this work 

 

Linear programming algorithm  

Step 1: Apply the simplex method to compute an optimal basic solution  to the linear 

program 
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Minimize                   …………………………..........................  (2) 

subject to 

                           = 0,       

                                            = 1,  and  

Step 2: Start with the non-empty set 

    S:  

and, for any state , set the decision 

   

Step 3: If S = I, then the algorithm is stopped with the average cost optimal R*. Otherwise, 

determine some state   and action such that  for some j  , set : = 

 and  and repeat step 3. 

The object of the linear program is the minimization of the long-run average cost per unit time, 

while the first set of constraints represent the balance equations requiring that for any state 

the long-run average number of transitions from state   per unit time must be equal to 

the long-run average number of transitions into state  per unit time. The last constraint 

obviously requires that the sum of the fraction  must be equal to 1. 

Next we sketch a proof that the above linear programming algorithm leads to an 

average cost optimal policy . Following Tjims(1988), the starting point is the average cost 

optimality equation (1) 

Since this equation is solvable then the linear inequalities 

          and   …………………………………  (3) 

must have a solution. Next it readily verified that any solution to this inequalities satisfies 

 for any  and any policy R, where denotes the long-run average cost per 

unit time under policy R when the initial state  is i. The inequalities   follow by a 

repeated  application  of the inequalities   ; Hence we 

can conclude that for any solution to the linear inequalities (3) holds that   with 
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 being the minimal average cost per unit time. Hence, using the fact that relative values  

exist such that  constitutes a solution to (3), linear program. 

Maximize  …………………………………………………………………………………………………………  (4) 

subject to 

          and   unrestricted 

has the minimal average cost as the optimal objective-function value. Next observe that the 

linear program (2) is the dual of the primal linear program (4) by the dual theorem of linear 

programming, the primal and the dual linear program have the same optimal objective function 

value. Hence the minimal objective function value of the linear program (2) yields the minimal 

average cost . To show that an optimal basic solution ( to the linear program induces an 

average cost optimal policy, we first prove that the non empty set 

     

is closed under any stationary policy. The proof proceeds by contradiction. Suppose that 

for some and then it follows from the constraint of the linear program 

(3)   that   contradicting  . By the closeness of the set under any 

policy and the assumption that every average cost optimal policy has  no two disjoint closed 

sets. The states   are transient under every average cost optimal policy. This result 

guarantees that the completion of policy in steps 3 of the linear programming algorithm is 

feasible. It remains to prove that the constructed policy  is average cost optimal. To do so, 

let  be the particular optimal basic solution to the primal linear program (4) such that 

this basic solution is complementary to the optimal basic solution ( ) of the dual linear 

program (2) then, by the complementary slackness property of linear programming 

      for    

By the construction of policy and the fact that the set  is closed under any policy, 

we have that the set I( ) of recurrent state of policy is contained in the set . Thus, 

noting that no transition is possible from a recurrent state to a transient state. 

     for   



Journal of Science, Technology, Mathematics and Education (JOSTMED) Volume 7(3), August, 2011 

 

222 
 

By iterating these equalities, we find that under policy the average cost per unit times equals 

 for each recurrent initial state. Hence, since for any transient initial state the close set of 

recurrent states will be reached after finitely many transitions, the average cost per unit time 

under policy is equal to for each initial  state, and so policy is average cost optimal. 

 

The Model 

According to Abubakar(2011), suppose that at the beginning of each day the health 

condition of a man is observed and classified as good health or poor health. If he is found to 

have poor health, he is given either a first aid/preventive treatment or curative treatment so 

that the health condition could change to good health and could attend to his usual activities .    

Suppose also that he could be found in good health conditions i = 1,2,… N. The good health 

condition i is better than i+1. That is, the health condition deteriorates in time. If the present 

condition is i and does not fall ill, then at the beginning of the next day then he has good health 

conditions j with probability pij. It is assumed that his body cannot improve on its own. That is 

pij = 0 for j<i so that ∑ pij = 1 for j>i. Let the health condition i = N represents a poor condition 

that requires treatment taking two days. For the intermediate states i with 1<i<N there is a 

choice for him to preventively take treatment so that he could remain in good health condition 

for the present day. Let a first aid/preventive treatment takes only one day at most and a 

change from poor health to a good health (after treatment) has a good health condition i=1. 

We wish to determine a rule which minimizes the long-term fraction of time the man is taking 

treatment. 

Let us put the problem in the frame work of a discrete-time Markov decision model. We 

assume a cost of one for each day he takes treatment, the long-term average cost per day 

represent the long-term fraction of days that he takes treatment. Also, since a treatment for 

poor health condition N takes two days and in the discrete Markov decision model the state of 

the system has to be defined at the beginning of each day. We need auxiliary state for the 

situation in which a treatment is in progress. Thus the set of possible states of his health 

condition is chosen as   

I = {1, 2, … N, N+1}. Here the state i with 1 ≤ i ≤ N corresponds to the situation in which an 

observation reveals good health condition i, while  state N+1 corresponds to the situation in 

which treatment is in progress already for one day. Denoting the two possible actions by       
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 a =     

The set of possible actions in state i is chosen as 

A (1) = {0}, A(i) ={0,1} for 1<i<N, A(N) = A(N+1) = {1} 

We find that the one step transition probabilities Pij (a) are given by  

Pij (1) =1 for 1<i<N 

PN, N+1(1) = 1 = PN+1, 1 (1)  

Pij (0) = Pij for 1≤i≤N and j≥i 

Pij (a) = 0 otherwise 

Further, the one step costs Ci (a) are given by  

 Ci (1) =1 and Ci (0) = 0. 

A rule or policy for controlling the health condition is a prescription for taking actions at 

each decision epoch. 

In view of Markov assumption, and the fact that the planning horizon is infinitely long, 

we shall therefore consider stationary policies. A stationary policy R is a rule that always 

prescribes a single action Ri whenever the system is found in state i at a decision epoch. 

The rule prescribing a treatment or poor health condition only when he has a good health 

condition for at least 5 working days is given by Ri = 0 for 1≤i<5 and Ri = 1 for 5 ≤ i ≤ N+1 . 

 

Illustration 

The average cost optimal when the number of possible working conditions equals N = 5 

and the deterioration probabilities of the health conditions of staff in a company is given below 

  

The policy – iteration algorithm is initialized with the policy which prescribes treatment, be it a 

first aid or curative action a=1 in each state except state 1 

The linear programming problem is  

Minimize           

subject to 
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The linear program has the optimal basic solution 

          ,     . 

This yields an average cost optimal policy R* = (0, 0, 1, 1, 1, 1) with the minimal average cost 

  = 0.206, in agreement with the results obtained by the policy-iteration algorithm. 

 

Conclusion 

The objective of the linear program is the minimization of the long-run average cost of 

treatment per unit time and the fraction of time in the long-run that a member staff could be in 

a poor condition of health and perhaps stays away from work. 

This could be determined for each staff, so that for the staff whose value is a large 

contrast to that of the staff of the company could be considered as being in poor health 

condition quite often and therefore unproductive and may be retired. The cost obtained is not 

very realistic; it could be determined by other methods. The linear programming formulation 

has the advantage that sophisticated linear programming codes with the additional option of 

sensitivity analysis are widely available. The policy-iteration formulation usually involves the 

writing of its own code. However,  the two methods are very efficient.  

 

References 

 

Abubakar, U. Y. (2011). Markov decision model  for human health with policy iteration. Journal  

 of Science, Technology and Mathematics (JOSTMED), 7(3), 109-117. 



Journal of Science, Technology, Mathematics and Education (JOSTMED) Volume 7(3), August, 2011 

 

225 
 

Abubakar, U. Y. (2005). A computer implementation of the revised simplex algorithm. ABACUS; 

         The Journal of the Mathematical Association of Nigeria. 32(2A), 24 – 34. 

 

Denardo, E. V., & Fox, B. L. (1968). Multichain markov renewal programs. SIAM J. Appl Math. 

16, 468-487. 

 

Diego, B., German, R. (2006). Linear programming solvers for markov decision processes. 

www.sys.virgina.edu|sieds06|papers|FmorningSession5.1. Date accessed: Jan.3rd2011. 

 

Goto, G. H., Lewis, M. E. & Puterman, M. L. (2004). Coffee, tea, or ...? A markov decision   

process model for airline meal provisioning. Transportation Science, 38(1), 107-118. 

 

Hillier & Lieberman (1980). Introduction to operations research. NY: Holden Day. 

 

Kulkani, V. G. (1999). Modelling, analysis, design, and control of stochastic system. Springer. 

 

Puterman, M. (1994). Markov decision processes: Discrete stochastic dynamic programming. 

 New York: John Wiley. 

 

Tijm, H. C. (1988). Stochastic modeling and analysis: A computational approach. New York:  

 John Wiley & Sons. 


